Related Products of 1111-67-7, Catalysts function by providing an alternate reaction mechanism that has a lower activation energy than would be found in the absence of the catalyst. In some cases, the catalyzed mechanism may include additional steps.In a article, 1111-67-7, molcular formula is CCuNS, introducing its new discovery.
Synthesis, structural and spectroscopic study of polymeric copper(I) thiocyanato complexes [Cu(NCS)L](n) (L = methyl nicotinate and ethyl nicotinate) and [HL] [Cu(NCS)2] (HL = H-ethyl isonicotinate)
Three new copper(I) thiocyanato complexes [Cu(NCS)L](n) (L = methyl nicotinate 1, ethyl nicotinate 2), and [HL] [Cu(NCS)2] (HL = H-ethyl isonicotinate 3), have been prepared and characterized by spectroscopic and crystallographic methods. All three complexes display MLCT transitions in the visible region, as well as visible solid state emission spectra at room temperature. Their IR spectra are measured and discussed. In the structure of 1 each copper atom links two S atoms from two mu-S,S,N thiocyanato ligands and two nitrogen atoms from a pyridine nucleus and from a third mu-S,S,N thiocyanate group; the two S atoms bind another copper atom forming a Cu2S2 cyclic unit. The ladder propagates along the a axis of the unit cell. The structure of 2 features CuS2N2 coordination with approximate tetrahedral environment, mu-S,S,N bridging thiocyanate groups giving rise to corrugated layers at y = 1/4. Complex 3 consists of an N-protonated ethyl isonicotinate cation and a polymeric [Cu(NCS)2]- anion. Each trigonal planar copper atom in the anion is coordinated by two S atoms from a mu-S,N thiocyanate bridge and a terminal S-thiocyanate group, and the third site is occupied by the end nitrogen of a mu-S,N thiocyanate bridge. The terminal NCS group forms a hydrogen bond of the type N-H¡¤¡¤¡¤N with an N-H group of the [HL]+ cation. The planar ribbon which runs in the a direction is further stabilized by N-H¡¤¡¤¡¤O hydrogen bonds. (C) 2000 Elsevier Science Ltd.
The proportionality constant is the rate constant for the particular unimolecular reaction. the reaction rate is directly proportional to the concentration of the reactant. I hope my blog about 1111-67-7 is helpful to your research. Related Products of 1111-67-7
Reference£º
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”