Cao, Guangwei et al. published their research in Journal of Solid State Electrochemistry in 2022 | CAS: 20427-59-2

Cuprichydroxide (cas: 20427-59-2) belongs to copper catalysts. Transition metal-catalyzed chemical transformation of organic electrophiles and organometallic reagents belong to the most important cross-coupling reaction in organic synthesis. Copper nanoparticles can also catalyze the coupling reaction of nitrogen-containing nucleophiles, phenols, thiols, xanthogenates, selenium ruthenium nucleophiles and the like.Recommanded Product: 20427-59-2

Surface cavity effect on C2H4 formation from electrochemical reduction of CO2 as studied using Cu2O cubes was written by Cao, Guangwei;Cao, Xuerui;Shan, Mengqing;Li, Mei;Zhu, Xinli;Han, Jinyu;Ge, Qingfeng;Wang, Hua. And the article was included in Journal of Solid State Electrochemistry in 2022.Recommanded Product: 20427-59-2 This article mentions the following:

Surface morphol. of Cu-based catalysts is considered as an important factor affecting both activity and product selectivity of electrochem. reduction of CO2. In this work, surface cavity effect on C2H4 formation was investigated using Cu2O cubes: solid cubes, cavity cubes, and broken cubes, typically representing smooth surface, cavity surface, and rough surface. With respect of C2H4 selectivity, cavity cubes show the significantly enhanced faradaic efficiency (FE) of C2H4, which is 2.7 and 1.7 times higher than those for solid cubes and broken cubes resp. Moreover, a ratio of CO produced by CO2 reduction reaction (CO2RR) converted to CH4 and C2H4 was calculated to assess the extent of CO further reduction for a catalyst. As noted, cavity cubes exhibited a highest ratio of 29.5%, in contrast with the lower ratio of 13.0% on broken cubes and 14.9% on solid cubes. Consequently, the role of surface cavity is reflected in two effects, the increased CO formation due to higher electrochem. surface area as compared to the smooth surface, and meanwhile the increased ratio of CO converted to hydrocarbons and alcs. due to porous feature as compared to the rough surface with a comparable high electrochem. active surface area (ECSA). What’s more, when applied in a flow cell reactor with a gas diffusion electrode, cavity cubes also achieved much higher C2 selectivity of 37.7% FEC2 than solid cubes and broken cubes. Our work provides a facile strategy for improving the catalytic C2+ product selectivity of Cu2O-based catalysts for CO2RR through modifying surface morphol. Graphical abstract: [graphic not available: see fulltext]. In the experiment, the researchers used many compounds, for example, Cuprichydroxide (cas: 20427-59-2Recommanded Product: 20427-59-2).

Cuprichydroxide (cas: 20427-59-2) belongs to copper catalysts. Transition metal-catalyzed chemical transformation of organic electrophiles and organometallic reagents belong to the most important cross-coupling reaction in organic synthesis. Copper nanoparticles can also catalyze the coupling reaction of nitrogen-containing nucleophiles, phenols, thiols, xanthogenates, selenium ruthenium nucleophiles and the like.Recommanded Product: 20427-59-2

Referemce:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”