New downstream synthetic route of Copper(II) acetate

The synthetic route of 142-71-2 has been constantly updated, and we look forward to future research findings.

142-71-2, Copper(II) acetate is a copper-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,142-71-2

To a 250 mL round bottom flask equipped with a reflux condenser was charged 1.000 g (1.6 mmol) of 5,10,15,20-tetraphenylporphyrin and 100 ml of N, N-dimethylformamide (DMF) , Heated to reflux (about 154 ), until it is completely dissolved,A solution of 650 g (3.2 mmol) of copper acetate in 50 mL of DMF was added thereto, followed by reaction at 150 C using thin layer chromatography (developing solvent in a 1: 1 by volume mixture of chloroform and petroleum ether) After about 0.5 hours of reaction, the raw material point disappears and the reaction is complete. The reaction solution is poured into 100 mL of ice water while hot, allowed to stand for 30 min and then filtered. The solid is washed with ethanol and washed to the filtrate. The crude product was dried in a vacuum. The product was 1.010 g, yield 93.5%.

The synthetic route of 142-71-2 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Wuhan Institute of Technology; Gao, Hong; Wang, Huidong; Chen, Chujun; Huang, Qihao; (17 pag.)CN106366086; (2017); A;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

New downstream synthetic route of Copper(II) acetate

142-71-2 Copper(II) acetate 8895, acopper-catalyst compound, is more and more widely used in various fields.

142-71-2, Copper(II) acetate is a copper-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,142-71-2

General procedure: Porphyrins 1-6 (Aldrich, 97%), organic solvents (Merck, 99%), and inorganic salts (Acros, 99%) were used as received. The complex formation was studied by recording electronic absorption spectra of the solutions using a Cary 300 spectrophotometer (Varian). To do so,solutions of the studied porphyrin (2.5¡Á10-5 mol/L)and the salt (2.5¡Á10-3 mol/L) in an organic solvent were put in the cell maintained at constant temperature(¡À0.1C), and the absorbance at the wave length corresponding to the maximum in the spectrum of the formed metal porphyrinate was monitored. Kinetic studies of the complex formation were performed over 288-363 K range.

142-71-2 Copper(II) acetate 8895, acopper-catalyst compound, is more and more widely used in various fields.

Reference£º
Article; Maltceva; Mamardashvili, N. Zh.; Russian Journal of General Chemistry; vol. 87; 6; (2017); p. 1175 – 1183; Zh. Obshch. Khim.; vol. 87; 6; (2017); p. 955 – 963,8;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

New downstream synthetic route of Copper(II) acetate

As the rapid development of chemical substances, we look forward to future research findings about 142-71-2

The copper-catalyst compound, cas is 142-71-2 name is Copper(II) acetate, mainly used in chemical industry, its synthesis route is as follows.

0.118 g (0.65 mmol) of Cu(OAc)2 was added to a solution of 0.04 g (0.065 mmol)of 2 in 50 mL of DMF. The reaction mixture was refluxed during 2 min and cooled to ambient; five-fold excess of water and NaCl was added. The precipitate was filtered off, washed with water, and dried. Yield 0.04 g (0.059 mmol) of CuTPP., 142-71-2

As the rapid development of chemical substances, we look forward to future research findings about 142-71-2

Reference£º
Article; Maltseva; Zvezdina; Chizhova; Mamardashvili, N. Zh.; Russian Journal of General Chemistry; vol. 86; 1; (2016); p. 102 – 109; Zh. Obshch. Khim.; vol. 86; 1; (2016); p. 110 – 117,8;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

The important role of 142-71-2

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Copper(II) acetate, 142-71-2

142-71-2, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Copper(II) acetate, cas is 142-71-2,the copper-catalyst compound, it is a common compound, a new synthetic route is introduced below.

General procedure: The reactions of complexing between porphyrins and copper acetate were studied by means of spectrophotometry in the range of 293-318 K. The change in temperature during the experiment did not exceed¡À0.1 K.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Copper(II) acetate, 142-71-2

Reference£º
Article; Pukhovskaya; Nam, Dao Tkhe; Fien, Chan Ding; Domanina; Ivanova, Yu. B.; Semeikin; Russian Journal of Physical Chemistry; vol. 91; 9; (2017); p. 1692 – 1702; Zh. Fiz. Khim.; vol. 91; 9; (2017); p. 1508 – 1519,12;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Analyzing the synthesis route of 142-71-2

142-71-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,142-71-2 ,Copper(II) acetate, other downstream synthetic routes, hurry up and to see

As a common heterocyclic compound, it belongs to copper-catalyst compound, name is Copper(II) acetate, and cas is 142-71-2, its synthesis route is as follows.

To a 250 mL round bottom flask equipped with a reflux condenser was charged 1.000 g (1.6 mmol) of 5,10,15,20-tetraphenylporphyrin and 100 ml of N, N-dimethylformamide (DMF) , Heated to reflux (about 154 ), until it is completely dissolved,A solution of 650 g (3.2 mmol) of copper acetate in 50 mL of DMF was added thereto, followed by reaction at 150 C using thin layer chromatography (developing solvent in a 1: 1 by volume mixture of chloroform and petroleum ether) After about 0.5 hours of reaction, the raw material point disappears and the reaction is complete. The reaction solution is poured into 100 mL of ice water while hot, allowed to stand for 30 min and then filtered. The solid is washed with ethanol and washed to the filtrate. The crude product was dried in a vacuum. The product was 1.010 g, yield 93.5%.

142-71-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,142-71-2 ,Copper(II) acetate, other downstream synthetic routes, hurry up and to see

Reference£º
Patent; Wuhan Institute of Technology; Gao, Hong; Wang, Huidong; Chen, Chujun; Huang, Qihao; (17 pag.)CN106366086; (2017); A;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Application of Dichlorotris(triphenylphosphino)ruthenium (II)

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Copper(II) acetate, 142-71-2

142-71-2, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Copper(II) acetate, cas is 142-71-2,the copper-catalyst compound, it is a common compound, a new synthetic route is introduced below.

0.118 g (0.65 mmol) of Cu(OAc)2 was added to a solution of 0.04 g (0.065 mmol)of 2 in 50 mL of DMF. The reaction mixture was refluxed during 2 min and cooled to ambient; five-fold excess of water and NaCl was added. The precipitate was filtered off, washed with water, and dried. Yield 0.04 g (0.059 mmol) of CuTPP.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Copper(II) acetate, 142-71-2

Reference£º
Article; Maltseva; Zvezdina; Chizhova; Mamardashvili, N. Zh.; Russian Journal of General Chemistry; vol. 86; 1; (2016); p. 102 – 109; Zh. Obshch. Khim.; vol. 86; 1; (2016); p. 110 – 117,8;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Analyzing the synthesis route of 142-71-2

142-71-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,142-71-2 ,Copper(II) acetate, other downstream synthetic routes, hurry up and to see

As a common heterocyclic compound, it belongs to copper-catalyst compound, name is Copper(II) acetate, and cas is 142-71-2, its synthesis route is as follows.

A mixture of 0.04 g (0.065 mmol) of porphin 1 and 0.118 g (0.65 mmol) of Cu(OAc)2 in 40 mL of dimethylformamide was heated under reflux for 15 s. The reaction mixture was cooled, water and solid NaCl was added, the precipitate was separated by filtration, washed with water, dried, and chromatographed on aluminum oxide using chloroform as an eluent to give 0.038 g (0.0562 mmol) (86%) of compound 5. MS (m/z (Irel, %)): 675 (97) [M]+; for C44H28N4Cu calcd.: 676. IR (nu, cm-1): 2926 s, 2855 m nu(C-H, Ph), 1694 w,1598 m 1489 s nu(C=C, Ph), 1441 m nu(C=N), 1371 m, 1346 s nu(C-N), 1146 s, 1071 s delta(C-H, Ph), 1005 s nu(C-C), 861 m, 794 m gamma(C-H, pyrrole ring), 742 m, 696 m gamma(C-H, h), 480 nu(Cu-N).

142-71-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,142-71-2 ,Copper(II) acetate, other downstream synthetic routes, hurry up and to see

Reference£º
Article; Chizhova; Shinkarenko; Zav?yalov; Mamardashvili, N. Zh.; Russian Journal of Inorganic Chemistry; vol. 63; 6; (2018); p. 732 – 735; Zh. Neorg. Khim.; vol. 63; 6; (2018); p. 695 – 699,5;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

New learning discoveries about 142-71-2

142-71-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,142-71-2 ,Copper(II) acetate, other downstream synthetic routes, hurry up and to see

Name is Copper(II) acetate, as a common heterocyclic compound, it belongs to copper-catalyst compound, and cas is 142-71-2, its synthesis route is as follows.

General procedure: Porphyrins 1-6 (Aldrich, 97%), organic solvents (Merck, 99%), and inorganic salts (Acros, 99%) were used as received. The complex formation was studied by recording electronic absorption spectra of the solutions using a Cary 300 spectrophotometer (Varian). To do so,solutions of the studied porphyrin (2.5¡Á10-5 mol/L)and the salt (2.5¡Á10-3 mol/L) in an organic solvent were put in the cell maintained at constant temperature(¡À0.1C), and the absorbance at the wave length corresponding to the maximum in the spectrum of the formed metal porphyrinate was monitored. Kinetic studies of the complex formation were performed over 288-363 K range.

142-71-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,142-71-2 ,Copper(II) acetate, other downstream synthetic routes, hurry up and to see

Reference£º
Article; Maltceva; Mamardashvili, N. Zh.; Russian Journal of General Chemistry; vol. 87; 6; (2017); p. 1175 – 1183; Zh. Obshch. Khim.; vol. 87; 6; (2017); p. 955 – 963,8;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Analyzing the synthesis route of Copper(II) acetate

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Copper(II) acetate, 142-71-2

142-71-2, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Copper(II) acetate, cas is 142-71-2,the copper-catalyst compound, it is a common compound, a new synthetic route is introduced below.

Copper tetraphenyl porphyrin was synthesised by taking tetra phenyl porphyrin[H2(TPP)]16(500mg) in chloroform(100ml).Copper(II) acetate(200mg) in glacial aceticacid(50ml) was added to the above solution andthe mixture was refluxed for 2hrs. The contents wereconcentrated to a volume of about 50-60ml andcooled to room temperature which resulted in crudecopper-tetraphenyl porphyrin Cu(TPP) (about450mg). The crude product was purified by columnchromatography using neutral alumina andchloroform as eluent. On elution the unreactedtetraphenyl porphyrin was eluted out first, followedby pure Cu(TPP). The chloroform fraction containingCu(TPP) was concentrated to obtain pure crystalsof Cu(TPP)[2]. The formation of Cu(TPP) wasmonitored by UV-visible spectroscopy which givepeaks-around 580, 541 and 417nm respectivelyconfirming the formation of Cu(TPP) (yield=400mg).

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Copper(II) acetate, 142-71-2

Reference£º
Article; Raikwar, Kalpana; Oriental Journal of Chemistry; vol. 31; 2; (2015); p. 1195 – 1200;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

The important role of 142-71-2

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Copper(II) acetate, 142-71-2

142-71-2, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Copper(II) acetate, cas is 142-71-2,the copper-catalyst compound, it is a common compound, a new synthetic route is introduced below.

General procedure: The reactions of complexing between porphyrins and copper acetate were studied by means of spectrophotometry in the range of 293-318 K. The change in temperature during the experiment did not exceed¡À0.1 K.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Copper(II) acetate, 142-71-2

Reference£º
Article; Pukhovskaya; Nam, Dao Tkhe; Fien, Chan Ding; Domanina; Ivanova, Yu. B.; Semeikin; Russian Journal of Physical Chemistry; vol. 91; 9; (2017); p. 1692 – 1702; Zh. Fiz. Khim.; vol. 91; 9; (2017); p. 1508 – 1519,12;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”