New learning discoveries about 142-71-2

The synthetic route of 142-71-2 has been constantly updated, and we look forward to future research findings.

142-71-2, Copper(II) acetate is a copper-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,142-71-2

To a 250 mL round bottom flask equipped with a reflux condenser was charged 1.000 g (1.6 mmol) of 5,10,15,20-tetraphenylporphyrin and 100 ml of N, N-dimethylformamide (DMF) , Heated to reflux (about 154 ), until it is completely dissolved,A solution of 650 g (3.2 mmol) of copper acetate in 50 mL of DMF was added thereto, followed by reaction at 150 C using thin layer chromatography (developing solvent in a 1: 1 by volume mixture of chloroform and petroleum ether) After about 0.5 hours of reaction, the raw material point disappears and the reaction is complete. The reaction solution is poured into 100 mL of ice water while hot, allowed to stand for 30 min and then filtered. The solid is washed with ethanol and washed to the filtrate. The crude product was dried in a vacuum. The product was 1.010 g, yield 93.5%.

The synthetic route of 142-71-2 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Wuhan Institute of Technology; Gao, Hong; Wang, Huidong; Chen, Chujun; Huang, Qihao; (17 pag.)CN106366086; (2017); A;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Analyzing the synthesis route of 142-71-2

142-71-2 Copper(II) acetate 8895, acopper-catalyst compound, is more and more widely used in various.

142-71-2, Copper(II) acetate is a copper-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,142-71-2

General procedure: Porphyrins 1-6 (Aldrich, 97%), organic solvents (Merck, 99%), and inorganic salts (Acros, 99%) were used as received. The complex formation was studied by recording electronic absorption spectra of the solutions using a Cary 300 spectrophotometer (Varian). To do so,solutions of the studied porphyrin (2.5¡Á10-5 mol/L)and the salt (2.5¡Á10-3 mol/L) in an organic solvent were put in the cell maintained at constant temperature(¡À0.1C), and the absorbance at the wave length corresponding to the maximum in the spectrum of the formed metal porphyrinate was monitored. Kinetic studies of the complex formation were performed over 288-363 K range.

142-71-2 Copper(II) acetate 8895, acopper-catalyst compound, is more and more widely used in various.

Reference£º
Article; Maltceva; Mamardashvili, N. Zh.; Russian Journal of General Chemistry; vol. 87; 6; (2017); p. 1175 – 1183; Zh. Obshch. Khim.; vol. 87; 6; (2017); p. 955 – 963,8;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Analyzing the synthesis route of 142-71-2

142-71-2 Copper(II) acetate 8895, acopper-catalyst compound, is more and more widely used in various.

142-71-2, Copper(II) acetate is a copper-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,142-71-2

Copper tetraphenyl porphyrin was synthesised by taking tetra phenyl porphyrin[H2(TPP)]16(500mg) in chloroform(100ml).Copper(II) acetate(200mg) in glacial aceticacid(50ml) was added to the above solution andthe mixture was refluxed for 2hrs. The contents wereconcentrated to a volume of about 50-60ml andcooled to room temperature which resulted in crudecopper-tetraphenyl porphyrin Cu(TPP) (about450mg). The crude product was purified by columnchromatography using neutral alumina andchloroform as eluent. On elution the unreactedtetraphenyl porphyrin was eluted out first, followedby pure Cu(TPP). The chloroform fraction containingCu(TPP) was concentrated to obtain pure crystalsof Cu(TPP)[2]. The formation of Cu(TPP) wasmonitored by UV-visible spectroscopy which givepeaks-around 580, 541 and 417nm respectivelyconfirming the formation of Cu(TPP) (yield=400mg).

142-71-2 Copper(II) acetate 8895, acopper-catalyst compound, is more and more widely used in various.

Reference£º
Article; Raikwar, Kalpana; Oriental Journal of Chemistry; vol. 31; 2; (2015); p. 1195 – 1200;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Brief introduction of 142-71-2

142-71-2 Copper(II) acetate 8895, acopper-catalyst compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.142-71-2,Copper(II) acetate,as a common compound, the synthetic route is as follows.,142-71-2

A mixture of 0.04 g (0.065 mmol) of porphin 1 and 0.118 g (0.65 mmol) of Cu(OAc)2 in 40 mL of dimethylformamide was heated under reflux for 15 s. The reaction mixture was cooled, water and solid NaCl was added, the precipitate was separated by filtration, washed with water, dried, and chromatographed on aluminum oxide using chloroform as an eluent to give 0.038 g (0.0562 mmol) (86%) of compound 5. MS (m/z (Irel, %)): 675 (97) [M]+; for C44H28N4Cu calcd.: 676. IR (nu, cm-1): 2926 s, 2855 m nu(C-H, Ph), 1694 w,1598 m 1489 s nu(C=C, Ph), 1441 m nu(C=N), 1371 m, 1346 s nu(C-N), 1146 s, 1071 s delta(C-H, Ph), 1005 s nu(C-C), 861 m, 794 m gamma(C-H, pyrrole ring), 742 m, 696 m gamma(C-H, h), 480 nu(Cu-N).

142-71-2 Copper(II) acetate 8895, acopper-catalyst compound, is more and more widely used in various.

Reference£º
Article; Chizhova; Shinkarenko; Zav?yalov; Mamardashvili, N. Zh.; Russian Journal of Inorganic Chemistry; vol. 63; 6; (2018); p. 732 – 735; Zh. Neorg. Khim.; vol. 63; 6; (2018); p. 695 – 699,5;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Downstream synthetic route of 142-71-2

The synthetic route of 142-71-2 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.142-71-2,Copper(II) acetate,as a common compound, the synthetic route is as follows.,142-71-2

General procedure: The reactions of complexing between porphyrins and copper acetate were studied by means of spectrophotometry in the range of 293-318 K. The change in temperature during the experiment did not exceed¡À0.1 K.

The synthetic route of 142-71-2 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Pukhovskaya; Nam, Dao Tkhe; Fien, Chan Ding; Domanina; Ivanova, Yu. B.; Semeikin; Russian Journal of Physical Chemistry; vol. 91; 9; (2017); p. 1692 – 1702; Zh. Fiz. Khim.; vol. 91; 9; (2017); p. 1508 – 1519,12;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

The important role of 142-71-2

With the complex challenges of chemical substances, we look forward to future research findings about Copper(II) acetate

Name is Copper(II) acetate, as a common heterocyclic compound, it belongs to copper-catalyst compound, and cas is 142-71-2, its synthesis route is as follows.,142-71-2

General procedure: The reactions of complexing between porphyrins and copper acetate were studied by means of spectrophotometry in the range of 293-318 K. The change in temperature during the experiment did not exceed¡À0.1 K.

With the complex challenges of chemical substances, we look forward to future research findings about Copper(II) acetate

Reference£º
Article; Pukhovskaya; Nam, Dao Tkhe; Fien, Chan Ding; Domanina; Ivanova, Yu. B.; Semeikin; Russian Journal of Physical Chemistry; vol. 91; 9; (2017); p. 1692 – 1702; Zh. Fiz. Khim.; vol. 91; 9; (2017); p. 1508 – 1519,12;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

New learning discoveries about 142-71-2

With the rapid development of chemical substances, we look forward to future research findings about Copper(II) acetate

Copper(II) acetate, cas is 142-71-2, it is a common heterocyclic compound, the copper-catalyst compound, its synthesis route is as follows.,142-71-2

General procedure: Porphyrins 1-6 (Aldrich, 97%), organic solvents (Merck, 99%), and inorganic salts (Acros, 99%) were used as received. The complex formation was studied by recording electronic absorption spectra of the solutions using a Cary 300 spectrophotometer (Varian). To do so,solutions of the studied porphyrin (2.5¡Á10-5 mol/L)and the salt (2.5¡Á10-3 mol/L) in an organic solvent were put in the cell maintained at constant temperature(¡À0.1C), and the absorbance at the wave length corresponding to the maximum in the spectrum of the formed metal porphyrinate was monitored. Kinetic studies of the complex formation were performed over 288-363 K range.

With the rapid development of chemical substances, we look forward to future research findings about Copper(II) acetate

Reference£º
Article; Maltceva; Mamardashvili, N. Zh.; Russian Journal of General Chemistry; vol. 87; 6; (2017); p. 1175 – 1183; Zh. Obshch. Khim.; vol. 87; 6; (2017); p. 955 – 963,8;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Analyzing the synthesis route of 142-71-2

With the synthetic route has been constantly updated, we look forward to future research findings about Copper(II) acetate,belong copper-catalyst compound

As a common heterocyclic compound, it belong copper-catalyst compound,Copper(II) acetate,142-71-2,Molecular formula: C4H6CuO4,mainly used in chemical industry, its synthesis route is as follows.,142-71-2

A mixture of 0.04 g (0.065 mmol) of porphin 1 and 0.118 g (0.65 mmol) of Cu(OAc)2 in 40 mL of dimethylformamide was heated under reflux for 15 s. The reaction mixture was cooled, water and solid NaCl was added, the precipitate was separated by filtration, washed with water, dried, and chromatographed on aluminum oxide using chloroform as an eluent to give 0.038 g (0.0562 mmol) (86%) of compound 5. MS (m/z (Irel, %)): 675 (97) [M]+; for C44H28N4Cu calcd.: 676. IR (nu, cm-1): 2926 s, 2855 m nu(C-H, Ph), 1694 w,1598 m 1489 s nu(C=C, Ph), 1441 m nu(C=N), 1371 m, 1346 s nu(C-N), 1146 s, 1071 s delta(C-H, Ph), 1005 s nu(C-C), 861 m, 794 m gamma(C-H, pyrrole ring), 742 m, 696 m gamma(C-H, h), 480 nu(Cu-N).

With the synthetic route has been constantly updated, we look forward to future research findings about Copper(II) acetate,belong copper-catalyst compound

Reference£º
Article; Chizhova; Shinkarenko; Zav?yalov; Mamardashvili, N. Zh.; Russian Journal of Inorganic Chemistry; vol. 63; 6; (2018); p. 732 – 735; Zh. Neorg. Khim.; vol. 63; 6; (2018); p. 695 – 699,5;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Analyzing the synthesis route of 142-71-2

With the synthetic route has been constantly updated, we look forward to future research findings about Copper(II) acetate,belong copper-catalyst compound

As a common heterocyclic compound, it belong copper-catalyst compound,Copper(II) acetate,142-71-2,Molecular formula: C4H6CuO4,mainly used in chemical industry, its synthesis route is as follows.,142-71-2

To a 250 mL round bottom flask equipped with a reflux condenser was charged 1.000 g (1.6 mmol) of 5,10,15,20-tetraphenylporphyrin and 100 ml of N, N-dimethylformamide (DMF) , Heated to reflux (about 154 ), until it is completely dissolved,A solution of 650 g (3.2 mmol) of copper acetate in 50 mL of DMF was added thereto, followed by reaction at 150 C using thin layer chromatography (developing solvent in a 1: 1 by volume mixture of chloroform and petroleum ether) After about 0.5 hours of reaction, the raw material point disappears and the reaction is complete. The reaction solution is poured into 100 mL of ice water while hot, allowed to stand for 30 min and then filtered. The solid is washed with ethanol and washed to the filtrate. The crude product was dried in a vacuum. The product was 1.010 g, yield 93.5%.

With the synthetic route has been constantly updated, we look forward to future research findings about Copper(II) acetate,belong copper-catalyst compound

Reference£º
Patent; Wuhan Institute of Technology; Gao, Hong; Wang, Huidong; Chen, Chujun; Huang, Qihao; (17 pag.)CN106366086; (2017); A;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Analyzing the synthesis route of Copper(II) acetate

With the synthetic route has been constantly updated, we look forward to future research findings about Copper(II) acetate,belong copper-catalyst compound

As a common heterocyclic compound, it belong copper-catalyst compound,Copper(II) acetate,142-71-2,Molecular formula: C4H6CuO4,mainly used in chemical industry, its synthesis route is as follows.,142-71-2

Copper tetraphenyl porphyrin was synthesised by taking tetra phenyl porphyrin[H2(TPP)]16(500mg) in chloroform(100ml).Copper(II) acetate(200mg) in glacial aceticacid(50ml) was added to the above solution andthe mixture was refluxed for 2hrs. The contents wereconcentrated to a volume of about 50-60ml andcooled to room temperature which resulted in crudecopper-tetraphenyl porphyrin Cu(TPP) (about450mg). The crude product was purified by columnchromatography using neutral alumina andchloroform as eluent. On elution the unreactedtetraphenyl porphyrin was eluted out first, followedby pure Cu(TPP). The chloroform fraction containingCu(TPP) was concentrated to obtain pure crystalsof Cu(TPP)[2]. The formation of Cu(TPP) wasmonitored by UV-visible spectroscopy which givepeaks-around 580, 541 and 417nm respectivelyconfirming the formation of Cu(TPP) (yield=400mg).

With the synthetic route has been constantly updated, we look forward to future research findings about Copper(II) acetate,belong copper-catalyst compound

Reference£º
Article; Raikwar, Kalpana; Oriental Journal of Chemistry; vol. 31; 2; (2015); p. 1195 – 1200;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”