The reaction rate of a catalyzed reaction is faster than the reaction rate of the uncatalyzed reaction at the same temperature. Computed Properties of C6H12O3, 14347-78-5, Name is (R)-(2,2-Dimethyl-1,3-dioxolan-4-yl)methanol, SMILES is OC[C@H]1OC(C)(C)OC1, in an article , author is Sharma, Neha, once mentioned of 14347-78-5.
Magnetically separable nanocatalyst (IL@CuFe2O4-L-Tyr-TiO2/TiTCIL): Preparation, characterization and its applications in 1,2,3-triazole synthesis and in photodegradation of MB
The present work encompasses the synthesis of novel heterogeneous magnetic nanocatalyst(IL@CuFe2O4L Tyr-TiO2/TiTCIL)and its characterization by Fourier-transform infrared spectroscopy (FTIR), high resolution transmission electron microscopy (HR-TEM), field emission gun scanning electron microscopy (FEG-SEM), energy-dispersive X-ray spectroscopy (EDX), vibrating sample magnetometry (VSM), X-ray powder diffraction (P-XRD), X-ray photoelectron spectroscopy (XPS), photoluminescence spectroscopy and Raman spectroscopy. XPS analysis confirms the presence of Cu as Cu1+ and Cu2+ by the effect of the linker in IL@CuFe(2)O(4)LTyr-TiO2/TiTCIL. It provides an eco-friendly procedure with several advantages such as operational simplicity, water as the solvent, short reaction time, easy workup and excellent yields in the synthesis of 1,4-disubstituted-1,2,3-triazoles via Click reaction. The catalyst showed recyclability up to seven runs in Click reaction and the recycled catalyst was also characterized by HR-TEM, FEG-SEM and XPS. In Click reaction, one single crystal of 1-benzyl-4-phenyl-1H-1,2,3-triazole was grown. Its energetic features, non-covalent interactions, molecular electrostatic potential surfaces, and packing arrangement were calculated by using the B3LYP-D3/def2-TZVP level of theory and the Bader’s quantum theory of Atoms in molecules (QTAIM). Moreover, IL@CuFe(2)O(4)LTyr-TiO2/TiTCIL also displayed good photocatalytic activity in the degradation of methylene blue dye in visible light. (c) 2020 Elsevier B.V. All rights reserved.
But sometimes, even after several years of basic chemistry education, it is not easy to form a clear picture on how they govern reactivity! 14347-78-5, you can contact me at any time and look forward to more communication. Computed Properties of C6H12O3.
Reference:
Copper catalysis in organic synthesis – NCBI,
,Special Issue “Fundamentals and Applications of Copper-Based Catalysts”