Awesome Chemistry Experiments For (R)-(2,2-Dimethyl-1,3-dioxolan-4-yl)methanol

Synthetic Route of 14347-78-5, The reactant in an enzyme-catalyzed reaction is called a substrate. Enzyme inhibitors cause a decrease in the reaction rate of an enzyme-catalyzed reaction.I hope my blog about 14347-78-5 is helpful to your research.

Synthetic Route of 14347-78-5, Enzymes are biological catalysts that produce large increases in reaction rates and tend to be specific for certain reactants and products. 14347-78-5, Name is (R)-(2,2-Dimethyl-1,3-dioxolan-4-yl)methanol, SMILES is OC[C@H]1OC(C)(C)OC1, belongs to copper-catalyst compound. In a article, author is Yamijala, Sharma S. R. K. C., introduce new discover of the category.

Harnessing Plasma Environments for Ammonia Catalysis: Mechanistic Insights from Experiments and Large-Scale Ab Initio Molecular Dynamics

By combining experimental measurements with ab initio molecular dynamics simulations, we provide the first microscopic description of the interaction between metal surfaces and a low-temperature nitrogen-hydrogen plasma. Our study focuses on the dissociation of hydrogen and nitrogen as the main activation route. We find that ammonia forms via an Eley-Rideal mechanism where atomic nitrogen abstracts hydrogen from the catalyst surface to form ammonia on an extremely short time scale (a few picoseconds). On copper, ammonia formation occurs via the interaction between plasma-produced atomic nitrogen and the H-terminated surface. On platinum, however, we find that surface saturation with NH groups is necessary for ammonia production to occur. Regardless of the metal surface, the reaction is limited by the mass transport of atomic nitrogen, consistent with the weak dependence on catalyst material that we observe and has been reported by several other groups. This study represents a significant step toward achieving a mechanistic, microscopic-scale understanding of catalytic processes activated in low-temperature plasma environments.

Synthetic Route of 14347-78-5, The reactant in an enzyme-catalyzed reaction is called a substrate. Enzyme inhibitors cause a decrease in the reaction rate of an enzyme-catalyzed reaction.I hope my blog about 14347-78-5 is helpful to your research.

Reference:
Copper catalysis in organic synthesis – NCBI,
,Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Extracurricular laboratory: Discover of 14347-78-5

Interested yet? Read on for other articles about 14347-78-5, you can contact me at any time and look forward to more communication. Formula: C6H12O3.

The reaction rate of a catalyzed reaction is faster than the reaction rate of the uncatalyzed reaction at the same temperature. 14347-78-5, Name is (R)-(2,2-Dimethyl-1,3-dioxolan-4-yl)methanol, SMILES is OC[C@H]1OC(C)(C)OC1, in an article , author is Argote-Fuentes, Sara, once mentioned of 14347-78-5, Formula: C6H12O3.

Photoelectrocatalytic Degradation of Congo Red Dye with Activated Hydrotalcites and Copper Anode

Photoelectrocatalysis is a novel technique that combines heterogeneous photocatalysis with the application of an electric field to the system through electrodes for the degradation of organic contaminants in aqueous systems, mainly of toxic dyes. The efficiency of these combined processes depends on the semiconductor properties of the catalysts, as well as on the anodic capacity of the electrode. In this study, we propose the use of active hydrotalcites in the degradation of Congo red dye through processes assisted by ultraviolet (UV) irradiation and electric current. Our research focused on evaluating the degradation capacity of Congo red by means of photolysis, catalysis, photocatalysis, electrocatalysis, and photoelectrocatalysis, as well as identifying the effect of the properties of the active hydrotalcites in these processes. The results show that a maximum degradation was reached with the photoelectrocatalysis process with active hydrotalcites and a copper anode at 6 h with 95% in a half-life of 0.36 h. The degradation is favored by the attack of the OH center dot radicals under double bonds in the diazo groups where the electrode produces Cu2+ ions, and with the photogenerated electrons, the recombination speed of the electron-hole in the hydrotalcite catalyst is reduced until the complete degradation.

Interested yet? Read on for other articles about 14347-78-5, you can contact me at any time and look forward to more communication. Formula: C6H12O3.

Reference:
Copper catalysis in organic synthesis – NCBI,
,Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Extracurricular laboratory: Discover of (R)-(2,2-Dimethyl-1,3-dioxolan-4-yl)methanol

Sometimes chemists are able to propose two or more mechanisms that are consistent with the available data. If a proposed mechanism predicts the wrong experimental rate law, however, the mechanism must be incorrect.Welcome to check out more blogs about 14347-78-5, in my other articles. HPLC of Formula: C6H12O3.

Chemistry is an experimental science, HPLC of Formula: C6H12O3, and the best way to enjoy it and learn about it is performing experiments.Introducing a new discovery about 14347-78-5, Name is (R)-(2,2-Dimethyl-1,3-dioxolan-4-yl)methanol, molecular formula is C6H12O3, belongs to copper-catalyst compound. In a document, author is An, Yanyan.

Hollow structured copper-loaded self-floating catalyst in sulfite-induced oxidation of arsenic(III) at neutral pH: Kinetics and mechanisms investigation

In heterogeneous reactions, efficient solid-liquid separation of catalyst from water after oxidation is a significant approach to reduce possible secondary pollution of aquatic environments. In this work, a hollow-structured self-floating copper-loaded catalyst (HSM-N-Cu) was fabricated using copper ammonia complexes and hollow glass microsphere as the copper source and supporter, respectively. The SEM, TEM, BET, XPS, and XRD characterization results suggested ideal specific surface area and stability of HSM-N-Cu. The prepared HSM-N-Cu in conjunction with sulfite have been successfully applied for As(III) oxidation in near-neutral conditions. In general, HSM-N-Cu effectively activating S(IV) process involved Cu(II)/Cu(I) conversion and chain reactions of oxysulfur radicals, where the S(IV) acted as a complexing ligand to Cu(II) surface and precursor of oxysulfur radicals. SO4 center dot- was verified as the dominant contributor to As(III) oxidation, the apparent reaction rate constant (k(obs)) for SO4 center dot- generation was 1.81 +/- 0.12 M-1 s(-1), and the reaction rate constant (k(12)) of SO5 center dot- + As(III) -> As (IV) + SO52- was first calculated as 2.6 x 10(6) M-1 s(-1) by kinetic study. The apparent activation energy (E-a) was 48.6 +/- 0.1 kJ mol(-1) at 100 mg L-1 HSM-N-Cu. Additionally, self-floating HSM-N-Cu could be easily separated, and its great stability was proven after six-cycle test. Furthermore, the HSM-N-Cu/S(IV) system can work effectively in broad range of geochemical conditions. In summary, the established process is feasible for remediation of As(III)-contaminated water, the collection of self-floating catalysts by surface separation from water provides a new idea to reduce secondary pollution of water by catalysts.

Sometimes chemists are able to propose two or more mechanisms that are consistent with the available data. If a proposed mechanism predicts the wrong experimental rate law, however, the mechanism must be incorrect.Welcome to check out more blogs about 14347-78-5, in my other articles. HPLC of Formula: C6H12O3.

Reference:
Copper catalysis in organic synthesis – NCBI,
,Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Brief introduction of 14347-78-5

Note that a catalyst decreases the activation energy for both the forward and the reverse reactions and hence accelerates both the forward and the reverse reactions. you can also check out more blogs about 14347-78-5. Quality Control of (R)-(2,2-Dimethyl-1,3-dioxolan-4-yl)methanol.

Children learn through play, and they learn more than adults might expect. Science experiments are a great way to spark their curiosity, Quality Control of (R)-(2,2-Dimethyl-1,3-dioxolan-4-yl)methanol14347-78-5, Name is (R)-(2,2-Dimethyl-1,3-dioxolan-4-yl)methanol, SMILES is OC[C@H]1OC(C)(C)OC1, belongs to copper-catalyst compound. In a article, author is Khan, Zaheer, introduce new discover of the category.

Synthesis of ternary nanoparticles using the complexation-reduction method and their catalytic activities for hydrogen generation from formic acid

A complex-reduction method was used for the synthesis of glycine-capped copper nanoparticles (Gly-CuNPs). Glycine-Cu2+ was prepared at room temperature, and the resulting complex was treated with NaBH4. Gly-Cu/Ag and Gly-Cu/Ag/MnO2 were prepared by using the stepwise metal displacement plating method. Gly-Cu, Gly-Cu/ Ag and Gly-Cu/Ag/MnO2 were employed as catalysts for hydrogen generation from the decomposition of formic acid. The alkaline barium hydroxide solution was employed to trap CO2 formation, and pseudo-first-order rate constants were calculated by using the k(obs) = 2.303/t log(A(alpha)-A(0)/A(alpha)-A(t)) relation. Hydrogen generation followed fractional order kinetics with formic acid, and various kinetic parameters were calculated for various concentrations of promoter (sodium format), catalyst and temperature. The catalytic activity was found to increase with an increasing number of incorporated metals, and the order of reactivity was as follows: Gly-Cu/Ag/ MnO2 > Gly-Cu/Ag > Gly-Cu. For Gly-Cu/Ag/MnO2, the values of activation parameters (E-a = 56 kJ/mol, Delta H-# = 53 kJ/mol, Delta S-# = – 68 J/K/mol) were determined with the Arrhenius and Eyring equations, which show higher catalytic efficiency than that of Gly-Cu/Ag (Ea = 69 kJ/mol, Delta H-# = 66 kJ/mol, Delta S-# = – 25 J/K/mol) due to the synergistic effect and strong interactions between the three metals. The catalytic stability and recyclability were excellent for five consecutive cycles, but the stability and recyclability decreased due to the higher reactivity of MnO2 NPs. (C) 2020 Elsevier B.V. All rights reserved.

Note that a catalyst decreases the activation energy for both the forward and the reverse reactions and hence accelerates both the forward and the reverse reactions. you can also check out more blogs about 14347-78-5. Quality Control of (R)-(2,2-Dimethyl-1,3-dioxolan-4-yl)methanol.

Reference:
Copper catalysis in organic synthesis – NCBI,
,Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Extracurricular laboratory: Discover of (R)-(2,2-Dimethyl-1,3-dioxolan-4-yl)methanol

But sometimes, even after several years of basic chemistry education, it is not easy to form a clear picture on how they govern reactivity! 14347-78-5, you can contact me at any time and look forward to more communication. Application In Synthesis of (R)-(2,2-Dimethyl-1,3-dioxolan-4-yl)methanol.

Reactions catalyzed within inorganic and organic materials and at electrochemical interfaces commonly occur at high coverage and in condensed media, causing turnover rates to depend strongly on interfacial structure and composition, 14347-78-5, Name is (R)-(2,2-Dimethyl-1,3-dioxolan-4-yl)methanol, SMILES is OC[C@H]1OC(C)(C)OC1, in an article , author is Rai, Surabhi, once mentioned of 14347-78-5, Application In Synthesis of (R)-(2,2-Dimethyl-1,3-dioxolan-4-yl)methanol.

Effectual electrocatalytic proton and water reduction by Cu-II terpyridine scaffolds

In this paper, three Cu(II) complexes [{(OAc)(2)Cu(3py-tpy)}(2)Cu(OAc)(2)(H2O)(2)] (1a ), {[Cu(4py-tpy)(OAc)]Cl}(n) (2a) and [Cu(Ph-tpy)(OAc)(2)] (3a) have been successfully employed for electrochemical hydrogen production in both organic and acidic aqueous medium (3py-tpy = 4′-(pyridin-3-yl)-2,2′:6′,2 ”-terpyridine; 4py-tpy = 4′-(pyridin-4-yl)-2,2′:6′,2 ”-terpyridine; Ph-tpy = 4′-phenyl-2,2′ :6′ ,2 ”-terpyridine). All the complexes exhibit efficient catalytic activity for proton reduction in 95:5 (v/v) DMF/H2O using acetic acid as a proton source. Among all the three complexes, 1a shows the highest TOF value of 1473 s(-1). The complexes show similar acid-base equilibria, and pK(a) for all the complexes are found to be 4.8, 4.6, and 4.3 respectively, for 1a , 2a , and 3a . The catalysts generate the aqua complex, through the substitution of the axial ligand. The aqua complex undergoes deprotonation to generate the corresponding hydroxo complex, i.e., [CuL(OAc)(H2O)](+) reversible arrow [CuL(OAc)(OH)] + H+ (where L indicates 3py-tpy, or 4py-tpy or Ph-tpy). The complexes remain stable in acidic conditions at low pH and exhibit very high catalytic activity. Among all these complexes 3a shows the higher catalytic activity for water reduction and TOF value of 810 mol of H-2 h(-1) (mole of catalyst)(-1). The presence of PCET process was noticed in case of proton reduction, which generates [(CuL)-L-0(OAc)(OH2)] from [(CuL)-L-II(OAc)(OH)], followed by protonation to generate the Cu-II-H intermediate species. The Cu-II-H in presence of H2O revert into [CuL(OAc)(OH)]. During water reduction in an acidic aqueous medium of pH 1.62, the [(CuL)-L-II(OAc)(H2O)](+) undergoes 2e-reduction to generate [(CuL)-L-0(OAc)(OH2)](-). The [(CuL)-L-0(OAc)(OH2)] interacts with H+ to generate Cu-II-H intermediate species. The Cu-II-H in the presence of H3O+ evolves H-2 and revert to [(CuL)-L-II(OAc)(H2O)](+). (C) 2020 Elsevier Ltd. All rights reserved.

But sometimes, even after several years of basic chemistry education, it is not easy to form a clear picture on how they govern reactivity! 14347-78-5, you can contact me at any time and look forward to more communication. Application In Synthesis of (R)-(2,2-Dimethyl-1,3-dioxolan-4-yl)methanol.

Reference:
Copper catalysis in organic synthesis – NCBI,
,Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Can You Really Do Chemisty Experiments About 14347-78-5

Interested yet? Keep reading other articles of 14347-78-5, you can contact me at any time and look forward to more communication. Computed Properties of C6H12O3.

Chemistry is the experimental and theoretical study of materials on their properties at both the macroscopic and microscopic levels. 14347-78-5, Name is (R)-(2,2-Dimethyl-1,3-dioxolan-4-yl)methanol, molecular formula is C6H12O3. In an article, author is Zhang, Maoyuan,once mentioned of 14347-78-5, Computed Properties of C6H12O3.

Cu(I)-N-heterocyclic carbene-catalyzed base free C-N bond formation of arylboronic acids with amines and azoles

A new N-heterocyclic carbene (NHC) precursor of imidazolium chloride and its corresponding Cu(I)-NHC complex 1 was synthesized. The complex 1 was found to be a highly effective catalyst for Chan-Evans-Lam coupling of arylboronic acid with amines and azoles (including imidazole, pyrazole and triazole), without addition of base at room temperature. Various substituents on three substrates can be tolerated, giving the desired coupling products in good to excellent yields (62-94%). The method is practical and offers an alternative to the corresponding copper-catalyzed Chan-Evans-Lam process for the construction of C-N bonds. (C) 2020 Published by Elsevier Ltd.

Interested yet? Keep reading other articles of 14347-78-5, you can contact me at any time and look forward to more communication. Computed Properties of C6H12O3.

Reference:
Copper catalysis in organic synthesis – NCBI,
,Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Some scientific research about (R)-(2,2-Dimethyl-1,3-dioxolan-4-yl)methanol

We¡¯ll also look at important developments in the pharmaceutical industry because understanding organic chemistry is important in understanding health, medicine, 14347-78-5. The above is the message from the blog manager. Name: (R)-(2,2-Dimethyl-1,3-dioxolan-4-yl)methanol.

Chemistry is traditionally divided into organic and inorganic chemistry. The former is the study of compounds containing at least one carbon-hydrogen bonds. 14347-78-5, Name is (R)-(2,2-Dimethyl-1,3-dioxolan-4-yl)methanol, molecular formula is C6H12O3, belongs to copper-catalyst compound, is a common compound. In a patnet, author is Chu, Ke, once mentioned the new application about 14347-78-5, Name: (R)-(2,2-Dimethyl-1,3-dioxolan-4-yl)methanol.

Amorphization activated FeB2 porous nanosheets enable efficient electrocatalytic N-2 fixation

Designing active, robust and cost-effective catalysts for the nitrogen reduction reaction (NRR) is of paramount significance for sustainable electrochemical NH3 synthesis. Transition-metal diborides (TMB2) have been recently theoretically predicted to be a new class of potential NRR catalysts, but direct experimental evidence is still lacking. Herein, we present the first experimental demonstration that amorphous FeB2 porous nanosheets (a-FeB2 PNSs) could be a highly efficient NRR catalyst, which exhibited an NH3 yield of 39.8 mu g h(-1) mg(-1) (-0.3 V) and a Faradaic efficiency of 16.7% (-0.2 V), significantly outperforming their crystalline counterpart and most of existing NRR catalysts. First-principle calculations unveiled that the amorphization could induce the upraised d-band center of a-FeB2 to boost d-2 pi* coupling between the active Fe site and *N2H intermediate, resulting in enhanced *N2H stabilization and reduced reaction barrier. Out study may facilitate the development and understanding of earth-abundant TMB2-based catalysts for electrocatalytic N-2 fixation. (C) 2020 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved.

We¡¯ll also look at important developments in the pharmaceutical industry because understanding organic chemistry is important in understanding health, medicine, 14347-78-5. The above is the message from the blog manager. Name: (R)-(2,2-Dimethyl-1,3-dioxolan-4-yl)methanol.

Reference:
Copper catalysis in organic synthesis – NCBI,
,Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Extracurricular laboratory: Discover of (R)-(2,2-Dimethyl-1,3-dioxolan-4-yl)methanol

Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law. In my other articles, you can also check out more blogs about 14347-78-5. Recommanded Product: (R)-(2,2-Dimethyl-1,3-dioxolan-4-yl)methanol.

Enzymes are biological catalysts that produce large increases in reaction rates and tend to be specific for certain reactants and products. 14347-78-5, Name is (R)-(2,2-Dimethyl-1,3-dioxolan-4-yl)methanol, molecular formula is C6H12O3, belongs to copper-catalyst compound. In a document, author is Zhang, Wei, introduce the new discover, Recommanded Product: (R)-(2,2-Dimethyl-1,3-dioxolan-4-yl)methanol.

Operando evidence of Cu+ stabilization via a single-atom modifier for CO2 electroreduction

Oxide-derived Cu materials are most commonly used as electrocatalysts for the carbon dioxide reduction reaction (CO2RR). Previous studies have proved that Cu+ and residual subsurface oxygen species can enhance the CO2RR activity; however the stable presence of Cu+ remains a subject of debate. Here, we design a strategy of single-atom Sn anchored on Cu2O nanosheets to stabilize the key Cu+ species for electroreduction of CO2. Operando synchrotron X-ray absorption spectroscopy and statistics analysis distinguish the active Cu+ and reduced Cu+ species, and reveal that the constructed Sn-O-Cu sites with charge transfer can significantly enhance the resistance of copper oxides to reduction. Operando infrared spectroscopy suggests that the survival of Cu+ species on the catalyst surface promotes the adsorption of *CO during the CO2RR, leading to the obvious improvement of CO2-to-CO conversion. Our results demonstrate the role of a single-atom-modifier in both stabilizing Cu+ species and enhancing the CO2RR selectivity of oxide-derived Cu catalysts.

Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law. In my other articles, you can also check out more blogs about 14347-78-5. Recommanded Product: (R)-(2,2-Dimethyl-1,3-dioxolan-4-yl)methanol.

Reference:
Copper catalysis in organic synthesis – NCBI,
,Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Extracurricular laboratory: Discover of 14347-78-5

A reaction mechanism is the microscopic path by which reactants are transformed into products. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 14347-78-5. SDS of cas: 14347-78-5.

Chemistry is the experimental science by definition. We want to make observations to prove hypothesis. For this purpose, we perform experiments in the lab. , SDS of cas: 14347-78-5, 14347-78-5, Name is (R)-(2,2-Dimethyl-1,3-dioxolan-4-yl)methanol, molecular formula is C6H12O3, belongs to copper-catalyst compound. In a document, author is Liu, Ya, introduce the new discover.

Behavior of enrichment and migration path of Cu-Ag-Pd-Bi-Pb in the recovery of waste multilayer ceramic capacitors by eutectic capture of copper

Recycling waste multilayer ceramic capacitors (MLCCs) has attracted much attention owing to its rich metal resource and environment pollution. Existing recycling processes have deficiencies in environmental protection, efficiency and metal purity. Capture technology is promising with advantages of efficient enrichment and less pollution, which was applied to recycle metals in this study. In order to study the mechanism for it, the behavior of enrichment and migration of metals in the recovery of waste MLCCs by eutectic capture of copper was discussed. The recovery rates of Ag, Pd and Bi were 87.53%, 100% and 100%, respectively. Alloy (Cu-Ag-Pd-Bi-Pb) and recyclable slag were obtained. There were three phases of Ag, Cu-Pd and Bi-Pb with the analysis of morphology and composition for the alloy. Then the capture mechanism was revealed. The slag and metal separated due to differences in chemical bonds, surface energy, density and viscosity. The interaction of metals was analyzed through phase diagrams and density functional theory. Pd tended to enter Cu phase. Ag and Cu existed as two phases. Bi and Pb neither entered Ag nor Cu phase based on phase diagrams and formation energy. This study provides a theoretical basis for the application of capture technology in metal enrichment. (C) 2020 Elsevier Ltd. All rights reserved.

A reaction mechanism is the microscopic path by which reactants are transformed into products. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 14347-78-5. SDS of cas: 14347-78-5.

Reference:
Copper catalysis in organic synthesis – NCBI,
,Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Interesting scientific research on 14347-78-5

But sometimes, even after several years of basic chemistry education, it is not easy to form a clear picture on how they govern reactivity! 14347-78-5, you can contact me at any time and look forward to more communication. Category: copper-catalyst.

The reaction rate of a catalyzed reaction is faster than the reaction rate of the uncatalyzed reaction at the same temperature. Category: copper-catalyst, 14347-78-5, Name is (R)-(2,2-Dimethyl-1,3-dioxolan-4-yl)methanol, SMILES is OC[C@H]1OC(C)(C)OC1, in an article , author is Wang, Chen, once mentioned of 14347-78-5.

Promotional effect of ion-exchanged K on the low-temperature hydrothermal stability of Cu/SAPO-34 and its synergic application with Fe/Beta catalysts

Kions were introduced onto Cu/SAPO-34 catalysts via the ion-exchange process in order to improve their stability under low-temperature hydrothermal aging. The changes in structure and copper-species contents of these catalysts upon hydrothermal aging were probed in order to investigate their effects on selective catalytic reduction (SCR) activity. For the fresh Cu/SAPO-34 catalysts, K ions had little influence on the chabazite framework but effected their acidities by exchanging with acid sites. After hydrothermal aging, the structural integrity and amount of active sites decreased on pure Cu/SAPO-34. While the K-loaded catalysts showed improved chabazite structure, acidity, and active site conservation with increasing K loading. However, although the 0.7 wt% K catalyst maintained the same crystallinity, active site abundance, and low-temperature SCR activity as the fresh catalyst upon aging, an apparent decrease in SCR activity at high temperature was observed because of the inevitable decrease in the number of Bronsted acid sites. To compensate for the activity disadvantage of K-loaded Cu/SAPO-34 at high temperature, Fe/Beta catalysts were co-employed with K-loaded Cu/SAPO-34, and a wide active temperature window of SCR activity was obtained. Thus, our study reveals that a combined system comprising Fe/Beta and K-loaded Cu/SAPO-34 catalysts shows promise for the elimination of NO(x)in real-world applications. (c) Higher Education Press 2020

But sometimes, even after several years of basic chemistry education, it is not easy to form a clear picture on how they govern reactivity! 14347-78-5, you can contact me at any time and look forward to more communication. Category: copper-catalyst.

Reference:
Copper catalysis in organic synthesis – NCBI,
,Special Issue “Fundamentals and Applications of Copper-Based Catalysts”