Share a compound : Copper(II) trifluoromethanesulfonate

The synthetic route of 34946-82-2 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.34946-82-2,Copper(II) trifluoromethanesulfonate,as a common compound, the synthetic route is as follows.

Ligand L2/L2? (15.2 mg, 63 mumol) was dissolved in ethylacetate (5 mL) and a solution of Cu(OTf)2 (11.4 mg, 31.5mumol) in ethyl acetate (3 mL) was added. The blue precipitatewas isolated by filtration with suction and dried at air;yield: 26 mg (98%). Crystals suitable for X-ray diffractionanalysis were obtained when a solution of the precipitatein the necessary amount of ethyl acetate was concentratedby slow evaporation. M.p. 255.5-256.5C. – IR (KBr): IR(KBr): = 3259 s br (NH), 3151 w, 1643 m, 1591 s, 1500 m,1285 vs, 1243 vs, ~1228 sh, 1159 s, 1028 vs, 720 m, 636 s,574 w, 518 m cm-1. – MS ((+)-MALDI-TOF): m/z (%) = 694.15(100) [M-CF3SO3]+, 1539.24 (8) [2 [CuL2L2?(OTf)2]-OTf]. -Anal. for C28H30CuF6N10O6S2 (844.27), water-free sample:calcd. C 39.83, H 3.58, N 16.59; S 7.59; found C 39.62, H 3.41,N 16.64, S 7.61., 34946-82-2

The synthetic route of 34946-82-2 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Schroeder, Sven; Frey, Wolfgang; Maas, Gerhard; Zeitschrift fur Naturforschung, B: Chemical Sciences; vol. 71; 6; (2016); p. 683 – 696;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Some tips on Copper(II) trifluoromethanesulfonate

34946-82-2, The synthetic route of 34946-82-2 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.34946-82-2,Copper(II) trifluoromethanesulfonate,as a common compound, the synthetic route is as follows.

The molar ratio of Cu (CF3SO3) 2 and 4- (3- (4H-1,2,4-triazol-4-yl) phenyl) -4H-1,2,4-triazole) (L)For 1: 1;L (0.0424 g, 0.2 mmol), Cu (CF3SO3) 2 (0.0691 g, 0.2 mmol), H2O (6 mL)CH3CN (4 mL), water heat 100 oC three days later slowly to room temperature.After the opening, there are yellow rod-like crystals suitable for X-ray single crystal diffraction analysis. Yield: 35% (based on L calculation).

34946-82-2, The synthetic route of 34946-82-2 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Tianjin Normal University; Wang, Ying; (11 pag.)CN104557984; (2017); B;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

New downstream synthetic route of Copper(II) trifluoromethanesulfonate

34946-82-2 is used more and more widely, we look forward to future research findings about Copper(II) trifluoromethanesulfonate

Copper(II) trifluoromethanesulfonate, cas is 34946-82-2, it is a common heterocyclic compound, the copper-catalyst compound, its synthesis route is as follows.,34946-82-2

To a solution of 6.90 g (18.5 mmol) of 5′-bromo-3′-nitro-3,4,5,6-tetrahydro-2H- [l,2′]bipyridinyl-4-yl)-acetic acid in dimethylsulfoxide (100 mL) is added 4.5 mL (41 mmol) of dimethylethylenediamine followed by 4.0 g (39 mmol) of sodiummethanesulfinate and 5.5 g (19 mmol) of copper (II) triflate. The mixture is heated to 130 C for lhour then cooled to room temperature. The mixture is diluted with water and stirred overnight during which time a solid precipitates from solution. The yellow solid is collected by filtration, washed with water and dried on the filter pad to provide 5.00 g (72.6%) of (5′-methanesulfonyl-3′-nitro-3,4,5,6-tetrahydro-2H-[l,2′]bipyridinyl-4-yl)- acetic acid ethyl ester.

34946-82-2 is used more and more widely, we look forward to future research findings about Copper(II) trifluoromethanesulfonate

Reference£º
Patent; BOEHRINGER INGELHEIM INTERNATIONAL GMBH; GINN, John David; SORCEK, Ronald John; TURNER, Michael Robert; WU, Di; WU, Frank; WO2011/84985; (2011); A1;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Some tips on Copper(II) trifluoromethanesulfonate

34946-82-2, 34946-82-2 Copper(II) trifluoromethanesulfonate 2734996, acopper-catalyst compound, is more and more widely used in various fields.

34946-82-2, Copper(II) trifluoromethanesulfonate is a copper-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

To a solution of 6.90 g (18.5 mmol) of 5′-bromo-3′-nitro-3,4,5,6-tetrahydro-2H- [l,2′]bipyridinyl-4-yl)-acetic acid in dimethylsulfoxide (100 mL) is added 4.5 mL (41 mmol) of dimethylethylenediamine followed by 4.0 g (39 mmol) of sodiummethanesulfinate and 5.5 g (19 mmol) of copper (II) triflate. The mixture is heated to 130 C for lhour then cooled to room temperature. The mixture is diluted with water and stirred overnight during which time a solid precipitates from solution. The yellow solid is collected by filtration, washed with water and dried on the filter pad to provide 5.00 g (72.6%) of (5′-methanesulfonyl-3′-nitro-3,4,5,6-tetrahydro-2H-[l,2′]bipyridinyl-4-yl)- acetic acid ethyl ester.

34946-82-2, 34946-82-2 Copper(II) trifluoromethanesulfonate 2734996, acopper-catalyst compound, is more and more widely used in various fields.

Reference£º
Patent; BOEHRINGER INGELHEIM INTERNATIONAL GMBH; GINN, John David; SORCEK, Ronald John; TURNER, Michael Robert; WU, Di; WU, Frank; WO2011/84985; (2011); A1;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

New downstream synthetic route of Copper(II) trifluoromethanesulfonate

The synthetic route of 34946-82-2 has been constantly updated, and we look forward to future research findings.

34946-82-2, Copper(II) trifluoromethanesulfonate is a copper-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

The ligand (75.9 mg, 0.12 mmol) was dissolved in THF (4 ml) and added to a suspension of sodium hydride (11.8 mg, 0.49 mmol) in THF (2 ml) at 0 C. The resulting yellow mixture was stirred at 0 C for 1 h and at r. t. for 2 h. Afterwards the solution was added dropwise to a solution of copper(II) triflate (44.3 mg, 0.12 mmol) in THF (2 ml). The dark brown solution was stirred at r. t. for 16 h. After filtration the solvent was removed in vacuo and the brown solid purified by recrystallisation from dichloromethane and pentane. 6: 60.8 mg, 60.9%. C41H36N5O5SF3Cu¡¤3CH2Cl2: Anal. Calc. C, 46.35; H, 4.24; N, 6.14. Found: C, 46.70; H, 4.12; N, 6.19%. HR-MS: C40H36N5O2Cu Calc. 681.2159. Found: 681.2148 (100.0), IR: nunu [cm-1]=3060, 2929, 2855, 1640, 1592, 1530, 1444, 1262, 1174, 1097, 1044, 879, 646., 34946-82-2

The synthetic route of 34946-82-2 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Sauer, Desiree C.; Wadepohl, Hubert; Polyhedron; vol. 81; (2014); p. 180 – 187;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Some scientific research about Copper(II) trifluoromethanesulfonate

34946-82-2, 34946-82-2 Copper(II) trifluoromethanesulfonate 2734996, acopper-catalyst compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.34946-82-2,Copper(II) trifluoromethanesulfonate,as a common compound, the synthetic route is as follows.

L (0.0424 g, 0.2 mmol), Cu (CF3SO3)2(0.0691g,0.2mmol)H2O (6 mL), CH3CN (4 mL), water and heat 100Oslow C down to room temperature after three days.After opening the autoclave there for X- ray diffraction analysis of the yellow rod-like crystals.Yield: 35%

34946-82-2, 34946-82-2 Copper(II) trifluoromethanesulfonate 2734996, acopper-catalyst compound, is more and more widely used in various fields.

Reference£º
Patent; Tianjin Normal University; Wang, Ying; (10 pag.)CN104557986; (2016); B;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Share a compound : Copper(II) trifluoromethanesulfonate

34946-82-2, 34946-82-2 Copper(II) trifluoromethanesulfonate 2734996, acopper-catalyst compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.34946-82-2,Copper(II) trifluoromethanesulfonate,as a common compound, the synthetic route is as follows.

A mixture of Cu(CF3SO3)2 (200 mg, 0.55 mmol) and ligand L(190 mg, 0.55 mmol) in a mixture of MeOH:CH2Cl2 in 1:1 volumeratio (30 mL) was stirred at room temperature for 24 h. The productwas isolated by evaporation of solvents and recrystallization of the residuefrom a minimum volume of MeOH by the gradual addition ofdiethyl ether to obtain complex 5 as a green solid. Crystal appropriatefor X-ray diffraction was obtained by vial to vial diffusion at 4 C.Yield: 80.3% (335 mg, 0.44 mmol).ESI-MS: m/z (%) = 345 [H + L]+ (100), 407 [Cu(L-H)]+ (90). IR(KBr): nu(CH)ar 3053; nuas(CH3) 2972; nus(CH3) 2877; nu(C=N)imin1553; nu(C=C)ar 1581, 1547, 1525, nu(CN) 1488, 1422; nu(C=N)ar1279, 1235, rho(CH)ar 1187, 1172, 1137; gamma(CH)ar 891, 782, 723,551 cm-1. Anal. calc. for [Cu(C20H16N4S)(CF3SO3)(MeOH)(H2O)](CF3SO3)] (756.17): C, 36.53; H, 2.93; N, 7.41; Found: C, 36.40; H, 2.99;N, 7.35%.

34946-82-2, 34946-82-2 Copper(II) trifluoromethanesulfonate 2734996, acopper-catalyst compound, is more and more widely used in various fields.

Reference£º
Article; Bocian, Aleksandra; Gorczy?ski, Adam; Marcinkowski, Damian; Witomska, Samanta; Kubicki, Maciej; Mech, Paulina; Bogunia, Ma?gorzata; Brzeski, Jakub; Makowski, Mariusz; Pawlu?, Piotr; Patroniak, Violetta; Journal of Molecular Liquids; vol. 302; (2020);,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Share a compound : Copper(II) trifluoromethanesulfonate

As the paragraph descriping shows that 34946-82-2 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.34946-82-2,Copper(II) trifluoromethanesulfonate,as a common compound, the synthetic route is as follows.

General procedure: To a light blue aqueous solution (4 mL) of Him(5.5 mg, 0.081 mmol) and Cu(BF4)26H2O (28 mg, 0.081 mmol)was added methanol solution (4 mL) of pz3CH (17 mg,0.079 mmol), and then 5v/v% TEA methanol solution (0.5 mL).The mixed solution was gently warmed for 1 h. After standing fora few days, a mixture of dark green crystals (a major product)and a light blue precipitate (a minor product) was formed. The darkgreen crystals were carefully separated from the mixture under amicroscope., 34946-82-2

As the paragraph descriping shows that 34946-82-2 is playing an increasingly important role.

Reference£º
Article; Kogane, Tamizo; Ondo, Akihiro; Yamasaki, Masaru; Kanetomo, Takuya; Ishida, Takayuki; Polyhedron; vol. 136; (2017); p. 64 – 69;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

New downstream synthetic route of Copper(II) trifluoromethanesulfonate

With the rapid development of chemical substances, we look forward to future research findings about Copper(II) trifluoromethanesulfonate

Copper(II) trifluoromethanesulfonate, cas is 34946-82-2, it is a common heterocyclic compound, the copper-catalyst compound, its synthesis route is as follows.,34946-82-2

To a solution of ligand L1 (50 mg, 0.2 mmol) in ethyl acetate(3 mL) was added a saturated solution of copper(II) trifluoromethanesulfonate(Cu(OTf)2) in ethyl acetate (2 mL).A blue-green precipitate appeared within 10 min, whichwas transformed into green-brown hexagonal crystalsduring slow evaporation of the solvent on standing withair contact. The crystals were collected by filtration withsuction, washed with a small volume of ethyl acetate toremove co-precipitated Cu(OTf)2. Yield: 85 mg (95%); M.p.272-274C. – IR (KBr): = 3262 m br (NH), 3147 w, 3103w, 1645 m, 1597 s, 1296 vs, 1253 vs, 1228 s, 1148 s, 1076 m,1059 m, 1029 vs, 757 w, 729 s, 629 s, 575 m, 520 m cm-1. -MS ((+)-MALDI-TOF): m/z (%) = 666.24 (100) [M-CF3SO3]+,516.26 (15) [M-2CF3SO3-H]+, 228.16 (74) [L1+H]+. – Anal. forC26H26CuF6N10O6S2 (816.21): calcd. C 38.26, H 3.21, N 17.16;found C 38.25, H 3.49, N 16.92.

With the rapid development of chemical substances, we look forward to future research findings about Copper(II) trifluoromethanesulfonate

Reference£º
Article; Schroeder, Sven; Frey, Wolfgang; Maas, Gerhard; Zeitschrift fur Naturforschung, B: Chemical Sciences; vol. 71; 6; (2016); p. 683 – 696;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Some tips on Copper(II) trifluoromethanesulfonate

34946-82-2, 34946-82-2 Copper(II) trifluoromethanesulfonate 2734996, acopper-catalyst compound, is more and more widely used in various fields.

34946-82-2, Copper(II) trifluoromethanesulfonate is a copper-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

A saturated solution of Cu(OTf)2 in n-butanol was addeddrop by drop to a solution of ligand L5 (40 mg, 0.16 mmol) in n-butanol (3 mL). Diethyl ether was placed on top of theblue butanol layer. After several weeks, deep blue crystalplatelets separated which were isolated by filtration withsuction, washed with a small volume of diethyl ether anddried at air. Yield: 64 mg (91); M.p. 271-275C. – IR (KBr): = 3322 br, 3154 w br, 3063 w, 1641 m, 1613 s, 1453 m, 1284vs, 1256 vs, 1225 vs, 1167 s, 1032 vs, 759 m, 700 s, 639 vs,576 m, 518 m cm-1. – Anal. for C28H30CuF6N10O6S2 (844.27):calcd. C 39.83, H 3.58, N 16.59; found C 40.07, H 3.74, N 16.16.

34946-82-2, 34946-82-2 Copper(II) trifluoromethanesulfonate 2734996, acopper-catalyst compound, is more and more widely used in various fields.

Reference£º
Article; Schroeder, Sven; Frey, Wolfgang; Maas, Gerhard; Zeitschrift fur Naturforschung, B: Chemical Sciences; vol. 71; 6; (2016); p. 683 – 696;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”