New learning discoveries about 34946-82-2

With the rapid development of chemical substances, we look forward to future research findings about Copper(II) trifluoromethanesulfonate

Copper(II) trifluoromethanesulfonate, cas is 34946-82-2, it is a common heterocyclic compound, the copper-catalyst compound, its synthesis route is as follows.,34946-82-2

A solution of Cu(OTf)2 (90.0 mg, 0.249 mM) in methanol was added to a solution of HLpz (53.5 mg, 0.250 mM) and triethylamine (25.0 mg, 0.250 mM) in methanol, affording a dark green solution. A solution of NaN3 (16.3 mg, 0.250 mM) was then layered on the above solution from which blue crystals of 3 suitable for X-ray analysis were obtained (55 mg, 69% yield). Anal. Calcd for C11H9CuN7O: C,41.44; H, 2.85; N, 30.76. Found: C, 40.56; H, 2.77; N, 30.18. UV-vis (CH3OH) [lambdamax, nm(epsilon, M-1 cm-1)]: 354 (5000), 646 (290). FTIR (KBr): 3430, 2055, 1640, 1376, 1164, 1050,866, 769, 660 cm-1. EPR (9.450 GHz, Mod. Amp. 5.0 G, CH3OH, 77 K): g|| = 2.248,g? 2:037, and A|| = 165 G. ESI-MS (MeOH): m/z = 341 [Cu(Lpz)N3 + Na]+, 659{[Cu(Lpz)N3]2 + Na}+, 977 {[Cu(Lpz)N3]3 + Na}+.

With the rapid development of chemical substances, we look forward to future research findings about Copper(II) trifluoromethanesulfonate

Reference£º
Article; Houser, Robert P.; Wang, Zhaodong; Powell, Douglas R.; Hubin, Timothy J.; Journal of Coordination Chemistry; vol. 66; 23; (2013); p. 4080 – 4092;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Share a compound : 34946-82-2

34946-82-2 is used more and more widely, we look forward to future research findings about Copper(II) trifluoromethanesulfonate

Copper(II) trifluoromethanesulfonate, cas is 34946-82-2, it is a common heterocyclic compound, the copper-catalyst compound, its synthesis route is as follows.,34946-82-2

To a solution of 6.90 g (18.5 mmol) of 5′-bromo-3′-nitro-3,4,5,6-tetrahydro-2H- [l,2′]bipyridinyl-4-yl)-acetic acid in dimethylsulfoxide (100 mL) is added 4.5 mL (41 mmol) of dimethylethylenediamine followed by 4.0 g (39 mmol) of sodiummethanesulfinate and 5.5 g (19 mmol) of copper (II) triflate. The mixture is heated to 130 C for lhour then cooled to room temperature. The mixture is diluted with water and stirred overnight during which time a solid precipitates from solution. The yellow solid is collected by filtration, washed with water and dried on the filter pad to provide 5.00 g (72.6%) of (5′-methanesulfonyl-3′-nitro-3,4,5,6-tetrahydro-2H-[l,2′]bipyridinyl-4-yl)- acetic acid ethyl ester.

34946-82-2 is used more and more widely, we look forward to future research findings about Copper(II) trifluoromethanesulfonate

Reference£º
Patent; BOEHRINGER INGELHEIM INTERNATIONAL GMBH; GINN, John David; SORCEK, Ronald John; TURNER, Michael Robert; WU, Di; WU, Frank; WO2011/84985; (2011); A1;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

The important role of Copper(II) trifluoromethanesulfonate

With the complex challenges of chemical substances, we look forward to future research findings about Copper(II) trifluoromethanesulfonate

Name is Copper(II) trifluoromethanesulfonate, as a common heterocyclic compound, it belongs to copper-catalyst compound, and cas is 34946-82-2, its synthesis route is as follows.,34946-82-2

General procedure: A mixture of ligand L (23.1 mg, 55 mumol) and appropriate metalsalt (55 mumol) in nitromethane (20 mL) was stirred at room temperaturefor 48 h under the normal atmosphere. The complexeswere isolated as a solids by evaporation of the solvent and followedby a dissolution of the residue in the minimum volume of CH3CNand precipitation of the complexes by the gradual addition ofether. Obtained solids were filtered off and dried in air.

With the complex challenges of chemical substances, we look forward to future research findings about Copper(II) trifluoromethanesulfonate

Reference£º
Article; Wa??sa-Chorab, Monika; Marcinkowski, Dawid; Kubicki, Maciej; Hnatejko, Zbigniew; Patroniak, Violetta; Polyhedron; vol. 118; (2016); p. 1 – 5;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

The important role of 34946-82-2

With the complex challenges of chemical substances, we look forward to future research findings about Copper(II) trifluoromethanesulfonate

Name is Copper(II) trifluoromethanesulfonate, as a common heterocyclic compound, it belongs to copper-catalyst compound, and cas is 34946-82-2, its synthesis route is as follows.,34946-82-2

L (0.0424g, 0.2mmol), Cu (CF 3SO 3) 2(0.0691g,0.2mmol)H 2O (6mL), CH 3CN (4mL),hot water 100 O slow C down to room temperature after three days. After opening theautoclave there for X- ray diffraction analysis of the yellow rod-like crystals. Yield:35% (calculated based on L).

With the complex challenges of chemical substances, we look forward to future research findings about Copper(II) trifluoromethanesulfonate

Reference£º
Patent; Tianjin Normal University; Wang, Ying; (11 pag.)CN104447810; (2016); B;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Brief introduction of 34946-82-2

34946-82-2 Copper(II) trifluoromethanesulfonate 2734996, acopper-catalyst compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.34946-82-2,Copper(II) trifluoromethanesulfonate,as a common compound, the synthetic route is as follows.

General procedure: To a 50 mL Schlenk flask, 200 mg (0.35 mmol) H4L2, 310 mg(0.86 mmol) of Cu(OTf)2, and 20 mL of dry CH3CN were added and theresulting mixture allowed to stir for 10 min. To the suspension, 1.0 mLof a 2.18M solution of NMe4OH in MeOH was added, resulting in acolor change to a deep green. After stirring for 1 h, solvent was removedunder vacuum to bring the volume to?5 mL. Diethyl ether (20 mL)was added, resulting in the precipitation of green powder that wascollected by filtration, washed with Et2O (2 x 20 mL) and allowed to dry(96 mg, 33%). Crystals were obtained by addition of KOTf to the CH3CNsolution. Repeated attempts to obtain accurate and reproducible CHNanalysis for K(THF)[L2Cu2(CH3CONH)] and the following complexeswere unsuccessful, which we attribute to incomplete combustion., 34946-82-2

34946-82-2 Copper(II) trifluoromethanesulfonate 2734996, acopper-catalyst compound, is more and more widely used in various fields.

Reference£º
Article; Elwell, Courtney E.; Neisen, Benjamin D.; Tolman, William B.; Inorganica Chimica Acta; vol. 485; (2019); p. 131 – 139;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Simple exploration of 34946-82-2

34946-82-2, As the paragraph descriping shows that 34946-82-2 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.34946-82-2,Copper(II) trifluoromethanesulfonate,as a common compound, the synthetic route is as follows.

The complex was prepared according a known procedure [11] , starting from LHMe2 (0.157?g, 1?eq) dissolved in acetone (10?ml) and Et3N (150?mul). A solution of Cu(OTf)2 (0.272?g, 2.1?eq) in acetonitrile (10?ml) was added, and the mixture was stirred for 1?h. The mixture was then concentrated, di-isopropylether (10?ml) was added and the solution was placed at -20?C for 1?week to give the pure complex [Cu2(LMe2)(mu-OH)][OTf] (73?mg, 28%) as a dark solid. ESI-MS (CH3CN), m/z: z?=?1, 589 (M-OTf)+, UV-Vis (CH3CN) (epsilon, M-1?cm-1): 242 (23000), 281 (14000), 326 (16000) 338 (16000), 390 (18000), 760 (185) Anal. Calcd. for C25H27Cu2N6O5S2F3: C, 40.59; H, 3.68; N, 11.36. Found C, 40.62; H, 3.85; N, 11.13.

34946-82-2, As the paragraph descriping shows that 34946-82-2 is playing an increasingly important role.

Reference£º
Article; Gennarini, Federica; Kochem, Amelie; Isaac, James; Mansour, Ali-Taher; Lopez, Isidoro; Le Mest, Yves; Thibon-Pourret, Aurore; Faure, Bruno; Jamet, Helene; Le Poul, Nicolas; Belle, Catherine; Simaan, A. Jalila; Reglier, Marius; Inorganica Chimica Acta; vol. 481; (2018); p. 113 – 119;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

New learning discoveries about 34946-82-2

34946-82-2, The synthetic route of 34946-82-2 has been constantly updated, and we look forward to future research findings.

34946-82-2, Copper(II) trifluoromethanesulfonate is a copper-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

A solution of imidazo[l,2-b]pyridazine (impy) (758 mg, 6.36 mmol, 10 equiv.) in MeOH (1 mL) was added dropwise at 55C to a solution of Cu(OTf)2 (230 mg, 0.636 mmol, 1.0 equiv.) in MeOH (1 mL). The blue precipitate which formed was washed with Et20 (3 x 2 mL), then recrystallized from hot MeOH to afford [Cu(OTf)2(impy)4] (324 mg, 0.387 mmol. 61%). Anal. Calcd. for C26H2OCUF6NI206S2: C, 37.26; H, 2.41; N, 20.05. Found: C, 37.07; H, 2.33; N, 19.91; IR (ATR, neat): v (cm 1) = 2981, 1620, 1541, 1503, 1374, 1352, 1306, 1281, 1241, 1221, 1149, 1071, 1027, 950, 918, 879, 801, 755, 733, 632.

34946-82-2, The synthetic route of 34946-82-2 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; OXFORD UNIVERSITY INNOVATION LIMITED; GOUVERNEUR, Veronique; CORNELISSEN, Bart; WILSON, Thomas Charles; (152 pag.)WO2019/186135; (2019); A1;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Brief introduction of 34946-82-2

34946-82-2, 34946-82-2 Copper(II) trifluoromethanesulfonate 2734996, acopper-catalyst compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.34946-82-2,Copper(II) trifluoromethanesulfonate,as a common compound, the synthetic route is as follows.

L (0.0424g, 0 . 2mmol), cu (CF 3 SO 3) 2 (0.0691g, 0 . 2mmol), H 2 O (6 ml) CH 3 CN (4 ml), water heat 100 o C drop to the room temperature slowly after three days. After operates the cauldron a suitable for X-ray crystal diffraction analysis of the yellow rod-like crystal. Yield: 35% (calculated based on L).

34946-82-2, 34946-82-2 Copper(II) trifluoromethanesulfonate 2734996, acopper-catalyst compound, is more and more widely used in various fields.

Reference£º
Patent; Tianjin Normal University; Wang, Ying; (12 pag.)CN104447804; (2016); B;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

New learning discoveries about 34946-82-2

With the rapid development of chemical substances, we look forward to future research findings about Copper(II) trifluoromethanesulfonate

Copper(II) trifluoromethanesulfonate, cas is 34946-82-2, it is a common heterocyclic compound, the copper-catalyst compound, its synthesis route is as follows.,34946-82-2

For the synthesis of (I), a solution of BDPA (0.160 g,0.554 mmol) in THF (6.0 ml) was added to a solution of Cu(triflate)2 (0.200 g, 0.554 mmol) in THF (6.0 ml) and theresulting mixture was stirred for 12 h. The resulting palegreen-palegreen-blue solution was concentrated under reduced pressure,affording a pale-green-blue solid which was dried under high vacuum. The solid was dissolved in THF and diffused withdiethyl ether, giving blue block-shaped crystals after 5 d(yield: 0.102 g, 26%). Elemental analysis calculated: C 40.51,H 3.94, N 5.67, S 8.65%; found: C 40.31, H 3.79, N 5.62; S8.69%. FT-IR (KBr, cm-1); 3374 (m), 3092 (w), 3030 (w), 2965(w), 2969 (m), 2880 (w), 1657 (m), 1612 (s), 1484 (m), 1450 (s),1358 (w), 1288 (s), 1250 (s), 1168 (s), 1030 (s), 860 (m), 771(m), 706 (m), 635 (s).

With the rapid development of chemical substances, we look forward to future research findings about Copper(II) trifluoromethanesulfonate

Reference£º
Article; Sivanesan, Dharmalingam; Youn, Min Hye; Park, Ki Tae; Kim, Hak Joo; Grace, Andrews Nirmala; Jeong, Soon Kwan; Acta Crystallographica Section C: Structural Chemistry; vol. 73; 11; (2017); p. 1024 – 1029;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Some tips on Copper(II) trifluoromethanesulfonate

34946-82-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,34946-82-2 ,Copper(II) trifluoromethanesulfonate, other downstream synthetic routes, hurry up and to see

It is a common heterocyclic compound, the copper-catalyst compound, Copper(II) trifluoromethanesulfonate, cas is 34946-82-2 its synthesis route is as follows.

The molar ratio of Cu (CF3SO3) 2 and 4- (3- (4H-1,2,4-triazol-4-yl) phenyl) -4H-1,2,4-triazole (L)(0.0624 g, 0.2 mmol), Cu (CF3SO3) 2 (0.0691 g, 0.2 mmol), H2O (6 mL), 1:CH3CN (4 mL). After three days of hydrothermal treatment at 100 oC, the solution was slowly cooled to room temperature. After opening the kettle for the X-ray single crystal diffraction analysis of the yellow rod-like crystals. Yield: 35% (based on L).

34946-82-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,34946-82-2 ,Copper(II) trifluoromethanesulfonate, other downstream synthetic routes, hurry up and to see

Reference£º
Patent; Tianjin Normal University; Wang, Ying; (12 pag.)CN104513260; (2016); B;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”