Downstream synthetic route of Copper(II) trifluoromethanesulfonate

With the synthetic route has been constantly updated, we look forward to future research findings about Copper(II) trifluoromethanesulfonate,belong copper-catalyst compound

As a common heterocyclic compound, it belongs to quinuclidine compound,Quinuclidine-4-carboxylic acid hydrochloride,40117-63-3,Molecular formula: C8H14ClNO290,mainly used in chemical industry, its synthesis route is as follows.,34946-82-2

To a yellow-brown solution of L1 (60 mg, 0.09 mmol) in THF (3 mL)was added a blue solution of [Cu(OTf)2] (36 mg, 0.09 mmol) at roomtemperature. Upon addition the solution colored to dark green. Themixture solution was stirred for 8 h and after filtered, 20 mL of diethylether were then added to the filtrate to precipitate a green solid. Thesolvents were removed by filtration and the residue was washed withether (3¡Á5 mL) and dried in vacuum to yield product 3 as a blue-greenpowder. The formulation of 3 was deduced from elemental analysis asbeing [Cu(H2O)2(L1)](OTf)2, H2O. Yield: 50 mg, 56%. Crystals suitablefor a X-ray diffraction study were obtained by slow vapor diffusion ofEt2O into a CH3CN solution of 3 in a sealed tube. IR (solid, cm-1):nu(NH) 3334 (w), nu(CO) 1654 (w), nu(CF) 1027 (s). UV-Vis (MeCN) lambdamax,nm (epsilon, M-1cm-1): 257 (28110), 284 (26400), 666 (51), EPR (9.30 GHz;CH3CN; 150 K): g//=2.27, g?=2.05, A//=166 G. Elemental analysis calcd (%) for C39H29CuF6N7O8S2. 1 H2O: C, 45.93; H, 3.46; N, 9.62.Found: C, 45.72; H, 3.17; N, 9.23.

With the synthetic route has been constantly updated, we look forward to future research findings about Copper(II) trifluoromethanesulfonate,belong copper-catalyst compound

Reference£º
Article; Ayad, Massinissa; Schollhammer, Philippe; Le Mest, Yves; Wojcik, Laurianne; Petillon, Francois Y.; Le Poul, Nicolas; Mandon, Dominique; Inorganica Chimica Acta; vol. 497; (2019);,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Downstream synthetic route of 34946-82-2

34946-82-2, The synthetic route of 34946-82-2 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.34946-82-2,Copper(II) trifluoromethanesulfonate,as a common compound, the synthetic route is as follows.

The molar ratio of Cu (CF3SO3) 2 and 4- (3- (4H-1,2,4-triazol-4-yl) phenyl) -4H-1,2,4-triazole) (L)For 1: 1;L (0.0424 g, 0.2 mmol), Cu (CF3SO3) 2 (0.0691 g, 0.2 mmol), H2O (6 mL)CH3CN (4 mL), water heat 100 oC three days later slowly to room temperature.After the opening, there are yellow rod-like crystals suitable for X-ray single crystal diffraction analysis. Yield: 35% (based on L calculation).

34946-82-2, The synthetic route of 34946-82-2 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Tianjin Normal University; Wang, Ying; (11 pag.)CN104557984; (2017); B;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

New learning discoveries about 34946-82-2

The synthetic route of 34946-82-2 has been constantly updated, and we look forward to future research findings.

34946-82-2, Copper(II) trifluoromethanesulfonate is a copper-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

The ligand (75.9 mg, 0.12 mmol) was dissolved in THF (4 ml) and added to a suspension of sodium hydride (11.8 mg, 0.49 mmol) in THF (2 ml) at 0 C. The resulting yellow mixture was stirred at 0 C for 1 h and at r. t. for 2 h. Afterwards the solution was added dropwise to a solution of copper(II) triflate (44.3 mg, 0.12 mmol) in THF (2 ml). The dark brown solution was stirred at r. t. for 16 h. After filtration the solvent was removed in vacuo and the brown solid purified by recrystallisation from dichloromethane and pentane. 6: 60.8 mg, 60.9%. C41H36N5O5SF3Cu¡¤3CH2Cl2: Anal. Calc. C, 46.35; H, 4.24; N, 6.14. Found: C, 46.70; H, 4.12; N, 6.19%. HR-MS: C40H36N5O2Cu Calc. 681.2159. Found: 681.2148 (100.0), IR: nunu [cm-1]=3060, 2929, 2855, 1640, 1592, 1530, 1444, 1262, 1174, 1097, 1044, 879, 646., 34946-82-2

The synthetic route of 34946-82-2 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Sauer, Desiree C.; Wadepohl, Hubert; Polyhedron; vol. 81; (2014); p. 180 – 187;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Analyzing the synthesis route of 34946-82-2

34946-82-2, 34946-82-2 Copper(II) trifluoromethanesulfonate 2734996, acopper-catalyst compound, is more and more widely used in various fields.

34946-82-2, Copper(II) trifluoromethanesulfonate is a copper-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

A saturated solution of Cu(OTf)2 in n-butanol was addeddrop by drop to a solution of ligand L5 (40 mg, 0.16 mmol) in n-butanol (3 mL). Diethyl ether was placed on top of theblue butanol layer. After several weeks, deep blue crystalplatelets separated which were isolated by filtration withsuction, washed with a small volume of diethyl ether anddried at air. Yield: 64 mg (91); M.p. 271-275C. – IR (KBr): = 3322 br, 3154 w br, 3063 w, 1641 m, 1613 s, 1453 m, 1284vs, 1256 vs, 1225 vs, 1167 s, 1032 vs, 759 m, 700 s, 639 vs,576 m, 518 m cm-1. – Anal. for C28H30CuF6N10O6S2 (844.27):calcd. C 39.83, H 3.58, N 16.59; found C 40.07, H 3.74, N 16.16.

34946-82-2, 34946-82-2 Copper(II) trifluoromethanesulfonate 2734996, acopper-catalyst compound, is more and more widely used in various fields.

Reference£º
Article; Schroeder, Sven; Frey, Wolfgang; Maas, Gerhard; Zeitschrift fur Naturforschung, B: Chemical Sciences; vol. 71; 6; (2016); p. 683 – 696;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Downstream synthetic route of Copper(II) trifluoromethanesulfonate

With the complex challenges of chemical substances, we look forward to future research findings about Copper(II) trifluoromethanesulfonate,belong copper-catalyst compound

As a common heterocyclic compound, it belongs to quinuclidine compound,Quinuclidine-4-carboxylic acid hydrochloride,40117-63-3,Molecular formula: C8H14ClNO138,mainly used in chemical industry, its synthesis route is as follows.,34946-82-2

Ligand H2L1 (100 mg, 0.254 mmol) wasadded to the clear solution ofCu(OTf)2 (275 mg, 0.763 mmol)in 10 mL MeNO2 forming a clear light blue colored solutionand the reaction mixture was stirred for 30 min at 50 C.The light blue solution thus formed was filtered and left inopen air for slow evaporation. Blue-green crystals suitable forX-ray structural analysis were formed after 24 h. (Yield: 76%)Anal. Calcd. for C26H36Cu4F12N10O32S4: C, 19.38; H, 2.25;N, 8.69%. Found. C, 19.12; H, 2.65; N, 8.50%. IR (nu, cm-1):3501.15 (H2O); 1674.56 (C=O); 1644.45 (C=N).

With the complex challenges of chemical substances, we look forward to future research findings about Copper(II) trifluoromethanesulfonate,belong copper-catalyst compound

Reference£º
Article; Lakma, Avinash; Hossain, Sayed Muktar; Pradhan, Rabindra Nath; Singh, Akhilesh Kumar; Journal of Chemical Sciences; vol. 130; 7; (2018);,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Some tips on Copper(II) trifluoromethanesulfonate

With the complex challenges of chemical substances, we look forward to future research findings about 34946-82-2,belong copper-catalyst compound

As a common heterocyclic compound, it belongs to copper-catalyst compound, name is Copper(II) trifluoromethanesulfonate, and cas is 34946-82-2, its synthesis route is as follows.,34946-82-2

The complex was prepared according a known procedure [11] , starting from LHMe2 (0.157?g, 1?eq) dissolved in acetone (10?ml) and Et3N (150?mul). A solution of Cu(OTf)2 (0.272?g, 2.1?eq) in acetonitrile (10?ml) was added, and the mixture was stirred for 1?h. The mixture was then concentrated, di-isopropylether (10?ml) was added and the solution was placed at -20?C for 1?week to give the pure complex [Cu2(LMe2)(mu-OH)][OTf] (73?mg, 28%) as a dark solid. ESI-MS (CH3CN), m/z: z?=?1, 589 (M-OTf)+, UV-Vis (CH3CN) (epsilon, M-1?cm-1): 242 (23000), 281 (14000), 326 (16000) 338 (16000), 390 (18000), 760 (185) Anal. Calcd. for C25H27Cu2N6O5S2F3: C, 40.59; H, 3.68; N, 11.36. Found C, 40.62; H, 3.85; N, 11.13.

With the complex challenges of chemical substances, we look forward to future research findings about 34946-82-2,belong copper-catalyst compound

Reference£º
Article; Gennarini, Federica; Kochem, Amelie; Isaac, James; Mansour, Ali-Taher; Lopez, Isidoro; Le Mest, Yves; Thibon-Pourret, Aurore; Faure, Bruno; Jamet, Helene; Le Poul, Nicolas; Belle, Catherine; Simaan, A. Jalila; Reglier, Marius; Inorganica Chimica Acta; vol. 481; (2018); p. 113 – 119;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Some tips on Copper(II) trifluoromethanesulfonate

With the complex challenges of chemical substances, we look forward to future research findings about 34946-82-2,belong copper-catalyst compound

As a common heterocyclic compound, it belongs to copper-catalyst compound, name is Copper(II) trifluoromethanesulfonate, and cas is 34946-82-2, its synthesis route is as follows.,34946-82-2

General procedure: The solution of CuX2 salt (0.5 mmol, 120.8 mg of Cu(NO3)23H2Ofor 3a/b and 180.8 mg of Cu(CF3SO3)2 for 4) in 5.0 mL of ethanol (3aand 4) or methanol (3b) was mixed with the solution of anequimolar amount of 1,7-phen (90.1 mg) in 5.0 mL of ethanol (3aand 4) or methanol (3b). After addition of 1,7-phen, a solutionchanged color from blue to green, and no formation of metalliccopper was observed. The reaction mixture was stirred at roomtemperature for 3-4 h and then left at room temperature to slowlyevaporate. Crystals of compounds 3a/b were obtained from themother solution, while those of compound 4 were obtained after recrystallization of the solid product formed from the reactionmixture in 15.0 mL of acetonitrile. These crystals were filtered offand dried at ambient temperature. Yield (calculated on the basisof 1,7-phen): 65.7 mg (54%) for 3a, 74.2 mg (61%) for 3b and94.1 mg (57%) for 4.

With the complex challenges of chemical substances, we look forward to future research findings about 34946-82-2,belong copper-catalyst compound

Reference£º
Article; Stevanovi?, Nevena Lj.; Andrejevi?, Tina P.; Crochet, Aurelien; Ilic-Tomic, Tatjana; Dra?kovi?, Nenad S.; Nikodinovic-Runic, Jasmina; Fromm, Katharina M.; Djuran, Milo? I.; Gli?i?, Biljana ?.; Polyhedron; vol. 173; (2019);,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Some tips on Copper(II) trifluoromethanesulfonate

With the complex challenges of chemical substances, we look forward to future research findings about 34946-82-2,belong copper-catalyst compound

As a common heterocyclic compound, it belongs to copper-catalyst compound, name is Copper(II) trifluoromethanesulfonate, and cas is 34946-82-2, its synthesis route is as follows.,34946-82-2

The molar ratio of Cu (CF3SO3) 2 and 4- (3- (4H-1,2,4-triazol-4-yl) phenyl) -4H-1,2,4-triazole (L)(0.0624 g, 0.2 mmol), Cu (CF3SO3) 2 (0.0691 g, 0.2 mmol), H2O (6 mL), 1:CH3CN (4 mL). After three days of hydrothermal treatment at 100 oC, the solution was slowly cooled to room temperature. After opening the kettle for the X-ray single crystal diffraction analysis of the yellow rod-like crystals. Yield: 35% (based on L).

With the complex challenges of chemical substances, we look forward to future research findings about 34946-82-2,belong copper-catalyst compound

Reference£º
Patent; Tianjin Normal University; Wang, Ying; (12 pag.)CN104513260; (2016); B;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Analyzing the synthesis route of 34946-82-2

34946-82-2, 34946-82-2 Copper(II) trifluoromethanesulfonate 2734996, acopper-catalyst compound, is more and more widely used in various fields.

34946-82-2, Copper(II) trifluoromethanesulfonate is a copper-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

A solution of Cu(OTf)2 (90.0 mg, 0.249 mM) in methanol was added to a solution of HLpz (53.5 mg, 0.250 mM) and triethylamine (25.0 mg, 0.250 mM) in methanol, affording a dark green solution. A solution of NaN3 (16.3 mg, 0.250 mM) was then layered on the above solution from which blue crystals of 3 suitable for X-ray analysis were obtained (55 mg, 69% yield). Anal. Calcd for C11H9CuN7O: C,41.44; H, 2.85; N, 30.76. Found: C, 40.56; H, 2.77; N, 30.18. UV-vis (CH3OH) [lambdamax, nm(epsilon, M-1 cm-1)]: 354 (5000), 646 (290). FTIR (KBr): 3430, 2055, 1640, 1376, 1164, 1050,866, 769, 660 cm-1. EPR (9.450 GHz, Mod. Amp. 5.0 G, CH3OH, 77 K): g|| = 2.248,g? 2:037, and A|| = 165 G. ESI-MS (MeOH): m/z = 341 [Cu(Lpz)N3 + Na]+, 659{[Cu(Lpz)N3]2 + Na}+, 977 {[Cu(Lpz)N3]3 + Na}+.

34946-82-2, 34946-82-2 Copper(II) trifluoromethanesulfonate 2734996, acopper-catalyst compound, is more and more widely used in various fields.

Reference£º
Article; Houser, Robert P.; Wang, Zhaodong; Powell, Douglas R.; Hubin, Timothy J.; Journal of Coordination Chemistry; vol. 66; 23; (2013); p. 4080 – 4092;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Analyzing the synthesis route of Copper(II) trifluoromethanesulfonate

With the synthetic route has been constantly updated, we look forward to future research findings about Copper(II) trifluoromethanesulfonate,belong copper-catalyst compound

As a common heterocyclic compound, it belong copper-catalyst compound,Copper(II) trifluoromethanesulfonate,34946-82-2,Molecular formula: C2CuF6O6S2,mainly used in chemical industry, its synthesis route is as follows.,34946-82-2

The ligand (75.9 mg, 0.12 mmol) was dissolved in THF (4 ml) and added to a suspension of sodium hydride (11.8 mg, 0.49 mmol) in THF (2 ml) at 0 C. The resulting yellow mixture was stirred at 0 C for 1 h and at r. t. for 2 h. Afterwards the solution was added dropwise to a solution of copper(II) triflate (44.3 mg, 0.12 mmol) in THF (2 ml). The dark brown solution was stirred at r. t. for 16 h. After filtration the solvent was removed in vacuo and the brown solid purified by recrystallisation from dichloromethane and pentane. 6: 60.8 mg, 60.9%. C41H36N5O5SF3Cu¡¤3CH2Cl2: Anal. Calc. C, 46.35; H, 4.24; N, 6.14. Found: C, 46.70; H, 4.12; N, 6.19%. HR-MS: C40H36N5O2Cu Calc. 681.2159. Found: 681.2148 (100.0), IR: nunu [cm-1]=3060, 2929, 2855, 1640, 1592, 1530, 1444, 1262, 1174, 1097, 1044, 879, 646.

With the synthetic route has been constantly updated, we look forward to future research findings about Copper(II) trifluoromethanesulfonate,belong copper-catalyst compound

Reference£º
Article; Sauer, Desiree C.; Wadepohl, Hubert; Polyhedron; vol. 81; (2014); p. 180 – 187;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”