Research on new synthetic routes about Copper(I) bromide

7787-70-4 Copper(I) bromide 24593, acopper-catalyst compound, is more and more widely used in various fields.

In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact.7787-70-4, Copper(I) bromide it is a common compound, a new synthetic route is introduced below.7787-70-4

7787-70-4, CuI (0.190 g, 1 mmol) was dissolved in acetonitrile (6 ml)at room temperature, followed by the addition of a solution of Hdpt (0.112 g, 0.5 mmol) in acetonitrile (8 ml) with vigorous magnetic stirring in a 25 ml Parr Teflon-lined stainless steel vessel. The mixture was heated for 3 days at 150 C and then cooled to room temperature at a rate of10 C/h.

7787-70-4 Copper(I) bromide 24593, acopper-catalyst compound, is more and more widely used in various fields.

Reference£º
Article; Hu, Sheng; Lin, DianRong; Xie, ZhenMing; Zhou, ChangXia; He, WenXi; Yu, FangYong; Transition Metal Chemistry; vol. 40; 6; (2015); p. 623 – 629;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

New learning discoveries about 7787-70-4

With the rapid development of chemical substances, we look forward to future research findings about Copper(I) bromide

Copper(I) bromide, cas is 7787-70-4, it is a common heterocyclic compound, the copper-catalyst compound, its synthesis route is as follows.,7787-70-4

To a Schlenk flask containing deoxygenated absolute ethanol (50 mL) was added in the following order, the CuBr (0.19 mmol, 0.027 g) and the ligand (L) (0.38 mmol, 0.10 g). The resulting solution was stirred at room temperature for 14 h. The solution was concentrated and a white precipitate appeared. The solid obtained was filtered off, and washed with diethyl ether (5 mL) under anaerobic conditions and dried under vacuum. 5: (Yield. 82%). Anal. Calc. for C30H28CuN8O2 (596.14 amu): C, 53.30; H, 4.17; N, 16.57. Found: C, 53.56; H, 4.27; N, 16.46%. Conductivity (Omega-1 cm2 mol-1, 1.2 * 10-3 M in CH3OH): 90. IR: (KBr, cm-1): 3325 nu(O-H), 3075 nu(C-H)ar, 2941 nu(C-H)al, 1604-1566 (nu(C=C), nu(C=N))ar, 1464 (delta(C=C), delta(C=N))ar, 1098, 1086 delta(C-H)ar,ip, 765, 696 delta(C-H)ar,oop. 1H NMR: (DMSO-d6 solution, 250 MHz, 298 K) delta: 8.67/8.62 [1H/1H, d, 3J = 4.7 Hz, 3J = 4.8 Hz, Hortho/Hortho’], 8.52/8.08 [1H/1H, t, 3J = 7.3 Hz, 3J = 7.0 Hz, Hpara/Hpara’], 8.05/7.94 [1H/1H, d, 3J = 7.3 Hz, H4/H4′], 7.62 [1H, s, Hpz], 7.83/7.55 [1H/1H, m, Hmeta/Hmeta’], 4.54 [2H, t, 3J = 5.1 Hz, NCH2-CH2OH], 4.02 [2H, t, 3J = 5.1 Hz, NCH2-CH2OH], 4.02 [2H,t, 3J = 5.1 Hz, NCH2-CH2OH]. In this complex, the signal attributableto proton hydroxyl (OH) is not observed. 13C{1H] NMR:(DMSO-d6 solution, 63 MHz, 298 K) delta: 158.5/153.2 (Cortho/Cortho’),143.4/140.2 (Cpara/Cpara’), 129.3/127.2 (C4/C40), 126.1/123.4 (Cmeta/Cmeta’), 108.2 (Cpz), 64.5, (NCH2-CH2OH), 58.6 (NCH2-CH2OH)ppm. ESI(+)(m/z) (%) = 596 (100%) [Cu(L)2]+.

With the rapid development of chemical substances, we look forward to future research findings about Copper(I) bromide

Reference£º
Article; Guerrero, Miguel; Calvet, Teresa; Font-Bardia, Merce; Pons, Josefina; Polyhedron; vol. 119; (2016); p. 555 – 562;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Some tips on 7787-70-4

As the paragraph descriping shows that 7787-70-4 is playing an increasingly important role.

7787-70-4,7787-70-4, Copper(I) bromide is a copper-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

CuBr (0.2 g, 1.39 mmol) wasdissolved in a mixture of dichloromethane (30 ml) and acetonitrile (30 ml) and then 2-benzylpyridine (0.23 g, 1.39 mmol)dissolved in dichloromethane (20 ml) was added. The mixture was stirred for 2 h at room temperature and allowed to standovernight. The next day the colour of the solution was green indicating the oxidation of Cu(I) to Cu(II) and the green solidwas filtered off and recrystallized from methanol. Yield (70%).

As the paragraph descriping shows that 7787-70-4 is playing an increasingly important role.

Reference£º
Article; Aguirrechu-Comeron; Pasan; Gonzalez-Platas; Ferrando-Soria; Hernandez-Molina; Journal of Structural Chemistry; vol. 56; 8; (2015); p. 1563 – 1571; Zh. Strukt. Kim.; vol. 56; 8; (2015); p. 1624 – 1632;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Share a compound : 7787-70-4

7787-70-4 is used more and more widely, we look forward to future research findings about Copper(I) bromide

Copper(I) bromide, cas is 7787-70-4, it is a common heterocyclic compound, the copper-catalyst compound, its synthesis route is as follows.,7787-70-4

General procedure: [CuBr(CNR)3] (1-4). Any one of the isocyanides CNR (R=Xyl, 2-Cl-6-MeC6H3, 2-Naphtyl, Cy) (3.1mmol) was added to a suspension of CuBr (143mg, 1.0mmol) in chloroform (5mL) and the reaction mixture was stirred at RT for 1h. The solvent was removed in vacuo and the product was recrystallized by slow concentration of a CH2Cl2/hexane solution at RT to give colorless (1, 2, and 4) or orange (3) crystalline solid.

7787-70-4 is used more and more widely, we look forward to future research findings about Copper(I) bromide

Reference£º
Article; Melekhova, Anna A.; Novikov, Alexander S.; Luzyanin, Konstantin V.; Bokach, Nadezhda A.; Starova, Galina L.; Gurzhiy, Vladislav V.; Kukushkin, Vadim Yu.; Inorganica Chimica Acta; vol. 434; (2015); p. 31 – 36;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Simple exploration of 7787-70-4

As the paragraph descriping shows that 7787-70-4 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.7787-70-4,Copper(I) bromide,as a common compound, the synthetic route is as follows.

7787-70-4, The ligand (50.0 mg, 0.11 mmol) was added to a suspension of copper(II) halogenide (0.11 mmol) in methanol (3 ml). The mixture was stirred at r. t. for 16 h. The precipitate was then filtered off and dried in vacuo. The pure compounds were obtained by recrystallization from dichloromethane and pentane.

As the paragraph descriping shows that 7787-70-4 is playing an increasingly important role.

Reference£º
Article; Sauer, Desiree C.; Wadepohl, Hubert; Polyhedron; vol. 81; (2014); p. 180 – 187;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

New learning discoveries about 7787-70-4

With the rapid development of chemical substances, we look forward to future research findings about Copper(I) bromide

Copper(I) bromide, cas is 7787-70-4, it is a common heterocyclic compound, the copper-catalyst compound, its synthesis route is as follows.,7787-70-4

General procedure: [CuBr(CNR)3] (1-4). Any one of the isocyanides CNR (R=Xyl, 2-Cl-6-MeC6H3, 2-Naphtyl, Cy) (3.1mmol) was added to a suspension of CuBr (143mg, 1.0mmol) in chloroform (5mL) and the reaction mixture was stirred at RT for 1h. The solvent was removed in vacuo and the product was recrystallized by slow concentration of a CH2Cl2/hexane solution at RT to give colorless (1, 2, and 4) or orange (3) crystalline solid.

With the rapid development of chemical substances, we look forward to future research findings about Copper(I) bromide

Reference£º
Article; Melekhova, Anna A.; Novikov, Alexander S.; Luzyanin, Konstantin V.; Bokach, Nadezhda A.; Starova, Galina L.; Gurzhiy, Vladislav V.; Kukushkin, Vadim Yu.; Inorganica Chimica Acta; vol. 434; (2015); p. 31 – 36;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Some tips on 7787-70-4

As the paragraph descriping shows that 7787-70-4 is playing an increasingly important role.

7787-70-4,7787-70-4, Copper(I) bromide is a copper-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: 0.022g (0.222mmol) of CuCl was added to 0.180g (0.109mmol) of [PPh4]2[1] dissolved in 20mL of MeCN solution at -35C. After stirring the resultant solution for 5min, the yellowish brown solution formed, which was filtered, and the filtrate was concentrated. A solution of Et2O (60mL) was added into the filtrate to precipitate the product at -35C. The precipitate was then washed with Et2O and dried to give [PPh4]2[3a] (0.107g, 0.058mmol, 53% based on [PPh4]2[1]). Similarly, under the same reaction conditions, using CuBr, we have isolated a yellowish brown solid of [PPh4]2[3b] (80% based on [PPh4]2[1]) upon crystallization from Et2O/MeCN.

As the paragraph descriping shows that 7787-70-4 is playing an increasingly important role.

Reference£º
Article; Shieh, Minghuey; Miu, Chia-Yeh; Liu, Yu-Hsin; Chu, Yen-Yi; Hsing, Kai-Jieah; Chiu, Jung-I; Lee, Chung-Feng; Journal of Organometallic Chemistry; vol. 815-816; (2016); p. 74 – 83;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Downstream synthetic route of 7787-70-4

The synthetic route of 7787-70-4 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.7787-70-4,Copper(I) bromide,as a common compound, the synthetic route is as follows.

7787-70-4, 0.25 mmol (0.066 g) PPh3 was added to 15 ml CH3CN solution ofcopper(I) bromide (0.036 g, 0.25 mmol) and stirred for 1 h. Acolourless precipitate formed to which the ligand L1 (0.067 g,0.25 mmol) and CHCl3 (10 ml) were added. The mixture was stirredfor 1 h. at room temperature. Orange coloured compoundappeared. It was filtered and dried in air. Single crystals wereobtained by slow diffusion of hexane to the dilute solution of thecompound in chloroform. Yield: 0.105 g (78%). FT-IR (KBr pellet,cm1): 3059(w), 2914(w), 2853(w), 2176 (vw), 2031(w),1603(m),1474(m), 1426(m), 1305(w), 1244(w), 1184(w), 1075(m), 1027(m), 970(w), 797(w), 748(s), 688(vs), 506(s), 483(s), 421(w). Anal.found (calc. for [CuI2(Br)2(L1)(PPh3)2]): C, 57.94 (58.01%); H, 4.49(4.50%); N, 5.19 (5.17%), Cu, 11.79 (11.72%).

The synthetic route of 7787-70-4 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Patra, Goutam K.; Pal, Pankaj K.; Mondal, Jahangir; Ghorai, Anupam; Mukherjee, Anindita; Saha, Rajat; Fun, Hoong-Kun; Inorganica Chimica Acta; vol. 447; (2016); p. 77 – 86;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Brief introduction of 7787-70-4

7787-70-4 Copper(I) bromide 24593, acopper-catalyst compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.7787-70-4,Copper(I) bromide,as a common compound, the synthetic route is as follows.

7787-70-4, General procedure: The complexes were typically obtained from the reaction of the copper halide (CuX) with the appropriate camphor ligand in THF (3 mL) upon stirring for ca. 18 h at room temperature. Filtration of the precipitate, washing with n-pentane (ca. 6mL) and drying under vacuum affords the Cu(I) complex.

7787-70-4 Copper(I) bromide 24593, acopper-catalyst compound, is more and more widely used in various fields.

Reference£º
Article; Fernandes, Tiago A.; Mendes, Filipa; Roseiro, Alexandra P.S.; Santos, Isabel; Carvalho, M. Fernanda N.N.; Polyhedron; vol. 87; (2015); p. 215 – 219;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Downstream synthetic route of 7787-70-4

The synthetic route of 7787-70-4 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.7787-70-4,Copper(I) bromide,as a common compound, the synthetic route is as follows.

7787-70-4, Compound 2 (23mg, 0.05mmol) in dichloromethane (2mL) was slowly added on a solution of copper bromide (7.2mg, 0.05mmol) in acetonitrile (2mL) at-60C. The orange-red solution resulting from complete diffusion was slowly evaporated at r.t. to afford compound 6 (quantitative yield) as colorless crystals suitable for an X-ray diffraction analysis. Mp=93C. 1H NMR (CDCl3, 300MHz): delta 5.21 (s, 4H, =CH2), 4.30-3.95 (m, 8H, CH2-C=), 4.00-2.35 (m, 24H). Br2C20Cu2H36O4S4 (755.56): calcd C 31.79, H, 4.80; found: C 31.09, H, 4.22.

The synthetic route of 7787-70-4 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Carel, Guillaume; Madec, David; Saponar, Alina; Saffon, Nathalie; Nemes, Gabriela; Rima, Ghassoub; Castel, Annie; Journal of Organometallic Chemistry; vol. 755; (2014); p. 72 – 77;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”