Introduction of a new synthetic route about 7787-70-4

With the rapid development of chemical substances, we look forward to future research findings about 7787-70-4

Copper(I) bromide, cas is 7787-70-4, it is a common heterocyclic compound, the copper-catalyst compound, its synthesis route is as follows.,7787-70-4

General procedure: A solution of cuprous chloride (5.8 mg, 0.058 mmol) in acetonitrile(10 mL) was added dropwise to a well stirred solution of 1(30 mg, 0.058 mmol) in dichloromethane (10 mL) at room temperaturewith constant stirring. After stirring for 6 h, the solvent wasremoved under reduced pressure and the residue obtained wasfurther washed with petroleum ether to give 4 as white solid product.Yield

With the rapid development of chemical substances, we look forward to future research findings about 7787-70-4

Reference£º
Article; Bhat, Sajad A.; Mague, Joel T.; Balakrishna, Maravanji S.; Inorganica Chimica Acta; vol. 443; (2016); p. 243 – 250;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Introduction of a new synthetic route about Copper(I) bromide

With the rapid development of chemical substances, we look forward to future research findings about 7787-70-4

Copper(I) bromide, cas is 7787-70-4, it is a common heterocyclic compound, the copper-catalyst compound, its synthesis route is as follows.,7787-70-4

General procedure: [CuBr(CNR)3] (1-4). Any one of the isocyanides CNR (R=Xyl, 2-Cl-6-MeC6H3, 2-Naphtyl, Cy) (3.1mmol) was added to a suspension of CuBr (143mg, 1.0mmol) in chloroform (5mL) and the reaction mixture was stirred at RT for 1h. The solvent was removed in vacuo and the product was recrystallized by slow concentration of a CH2Cl2/hexane solution at RT to give colorless (1, 2, and 4) or orange (3) crystalline solid. (0027) [CuBr(CNXyl)3] (1). Yield 530mg, 99%. Anal. Calc. for C27H27N3BrCu: C, 60.39; H, 5.07; N, 7.83. Found: C, 59.88; H, 4.89; N, 7.70%. HRESI+-MS, m/z: 325.0756 ([M-(XylNC)2]+, calcd 325.0760). IR spectrum in KBr, selected bands, cm-1: 2136 s nu(C?N). 1H NMR in CDCl3, delta: 2.49 (s, 6H, CH3), 7.11 (d, J 7.6Hz, 2H, aryl) 7.23 (d, J 7.6Hz, 1H, aryl). 13C{1H} NMR in CDCl3, delta: 18.95 (CH3), 127.92, 129.33, 135.49 (aryl).

With the rapid development of chemical substances, we look forward to future research findings about 7787-70-4

Reference£º
Article; Melekhova, Anna A.; Novikov, Alexander S.; Luzyanin, Konstantin V.; Bokach, Nadezhda A.; Starova, Galina L.; Gurzhiy, Vladislav V.; Kukushkin, Vadim Yu.; Inorganica Chimica Acta; vol. 434; (2015); p. 31 – 36;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Some tips on 7787-70-4

As the paragraph descriping shows that 7787-70-4 is playing an increasingly important role.

7787-70-4, Copper(I) bromide is a copper-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Cuprous iodide (0.198 g, 1.04 mmol)Adding to a solution of 3,4-bis(diphenylphosphino)-2,5-dimethylthiophene (dpmt) (0.500 g, 1.04 mmol) synthesized in Example 1 in 30 mL of CH2Cl2,The mixture was stirred at room temperature for 5 h. Filter the reaction mixture,The solvent was removed under reduced pressure to give a pale yellow powder.The powder was dissolved in dichloromethane and recrystallized to give 0.615 g of yellow crystals.That is, the complex 1 was found to have a yield of 88.1%.

As the paragraph descriping shows that 7787-70-4 is playing an increasingly important role.

Reference£º
Patent; Hubei University; Liu Li; Wei Qiong; (15 pag.)CN108997382; (2018); A;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Brief introduction of 7787-70-4

7787-70-4 Copper(I) bromide 24593, acopper-catalyst compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.7787-70-4,Copper(I) bromide,as a common compound, the synthetic route is as follows.

A solution of CuBr (0.0173 g, 0.12 mmol) in 10 mL of acetonitrile was added dropwise to a solution of 4 (0.048 g, 0.12 mmol) in 10 mL of dichloromethane at room temperature. The reaction mixture was stirred for 4 h. The solvent was removed under reduced pressure to obtain 8 as a brown crystalline solid. Yield: 82% (0.054 g). Mp: >195 C (dec). Anal. Calc. for C42H44Cu2Br2N2P2Se2¡¤CH3CN: C, 46.99; H, 4.21; N, 3.74. Found: C, 46.77; H, 4.10; N, 3.79%. 1H NMR (400 MHz, CDCl3) delta 7.73-7.02 (m, Ar, 28H), 3.43 (s, CH2, 4H), 2.46 (s, NMe2, 12H). 31P{1H} NMR (162 MHz, CDCl3): delta 23.2 (br s).

7787-70-4 Copper(I) bromide 24593, acopper-catalyst compound, is more and more widely used in various.

Reference£º
Article; Ananthnag, Guddekoppa S.; Edukondalu, Namepalli; Mague, Joel T.; Balakrishna, Maravanji S.; Polyhedron; vol. 62; (2013); p. 203 – 207;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Some tips on 7787-70-4

As the paragraph descriping shows that 7787-70-4 is playing an increasingly important role.

7787-70-4, Copper(I) bromide is a copper-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

A mixture of 2 (55mg, 0.13mmol) and Ag2O (18.5mg, 0.08mmol) in a 5mL flask was flashed with nitrogen. Anhydrous acetonitrile (1.5mL) was added and the resulting mixture was heated at 65C for 20h. CuBr2 (29.5mg, 0.13 3mmol) and K2CO3 (18.3mg, 0.13mmol) was added to the above solution. After stirring for another 20h, the mixture was filtered through Celite. The filtrate was concentrated and the residue was re-precipitated from acetonitrile/ether to give dark purple solids (240mg, 70%). IR (CHCl3) upsilon(C=O) 1595cm-1. UV-Vis (MeOH) lambdamax (epsilon): 219 (1.0¡Á104), 250 (5.2¡Á103), 340 (sh, 1.3¡Á103), 381 (sh, 5.4¡Á102) and 640 (79) nm; mueff=1.71 muB (295K); HRMS (ESI): m/z 396.1088 [M-Br]+, calcd. 396.1017.

As the paragraph descriping shows that 7787-70-4 is playing an increasingly important role.

Reference£º
Article; Aaron Lin, Shih-Chieh; Liu, Yi-Hung; Peng, Shie-Ming; Liu, Shiuh-Tzung; Journal of Organometallic Chemistry; vol. 859; (2018); p. 52 – 57;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

New learning discoveries about 7787-70-4

The synthetic route of 7787-70-4 has been constantly updated, and we look forward to future research findings.

7787-70-4, Copper(I) bromide is a copper-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: 0.028g (0.283mmol) of CuCl was added to 0.220g (0.133mmol) of [PPh4]2[1] dissolved in 20mL of MeCN solution. After stirring the resultant solution for 1hat RT, the yellowish brown solution formed. The solution was filtered, and the solvent was removed in vacuo. The precipitate was washed with Et2O and MeOH and extracted with CH2Cl2 which was then recrystallized with Et2O/MeOH/CH2Cl2 to give [PPh4]2[5a] (0.110g, 0.064mmol, 96% based on Se). Similarly, under the same reaction conditions, using CuBr and CuI, we have isolated a yellowish brown solid of [PPh4]2[5b] (98% based on Se) and [PPh4]2[5c] (71% based on Se), respectively, upon crystallization from Et2O/MeOH/CH2Cl2. [PPN]2[5a] and [PPN]2[5c] were synthesized according to a similar procedure.

The synthetic route of 7787-70-4 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Shieh, Minghuey; Miu, Chia-Yeh; Liu, Yu-Hsin; Chu, Yen-Yi; Hsing, Kai-Jieah; Chiu, Jung-I; Lee, Chung-Feng; Journal of Organometallic Chemistry; vol. 815-816; (2016); p. 74 – 83;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Simple exploration of 7787-70-4

As the paragraph descriping shows that 7787-70-4 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.7787-70-4,Copper(I) bromide,as a common compound, the synthetic route is as follows.

General procedure: A solution of cuprous chloride (5.8 mg, 0.058 mmol) in acetonitrile(10 mL) was added dropwise to a well stirred solution of 1(30 mg, 0.058 mmol) in dichloromethane (10 mL) at room temperaturewith constant stirring. After stirring for 6 h, the solvent wasremoved under reduced pressure and the residue obtained wasfurther washed with petroleum ether to give 4 as white solid product.Yield

As the paragraph descriping shows that 7787-70-4 is playing an increasingly important role.

Reference£º
Article; Bhat, Sajad A.; Mague, Joel T.; Balakrishna, Maravanji S.; Inorganica Chimica Acta; vol. 443; (2016); p. 243 – 250;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Simple exploration of 7787-70-4

As the paragraph descriping shows that 7787-70-4 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.7787-70-4,Copper(I) bromide,as a common compound, the synthetic route is as follows.

A mixture of CuBr (0.57g, 4mmol) and 2,9-dimethyl-1,10-phenanthroline (L3) (0.72g, 2mmol) in CH3CN (30ml) was stirred overnight under nitrogen atmosphere at room temperature. The copper complex was obtained as a brick-red solid in 90% yield.

As the paragraph descriping shows that 7787-70-4 is playing an increasingly important role.

Reference£º
Article; Liang, Zhaoli; Wang, Fei; Chen, Pinhong; Liu, Guosheng; Journal of Fluorine Chemistry; vol. 167; (2014); p. 55 – 60;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Downstream synthetic route of 7787-70-4

The synthetic route of 7787-70-4 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.7787-70-4,Copper(I) bromide,as a common compound, the synthetic route is as follows.

A yellow solution of 168.0 mg (0.736 mmol) of 2b in toluene (10 mL) was added to a green CH3CN solution (20 mL) containing 105.6 mg (0.736 mmol) CuBr with stirring at ambient temperature. The reaction mixture was allowed to stir overnight forming a dark green precipitate. The solution was filtered, and the precipitate washed with cold MeOH (5 mL) and dried under vacuum (57.9 mg, 17% yield). 1H and 13C{1H} NMR spectra could not be recorded due to strong paramagnetic properties of complex. FTIR (KBr) 3425, 3056, 3006, 2918, 1627, 1593, 1466, 1436, 1300, 1269, 1236, 1201, 1157, 1106, 1092, 1069, 1046, 967, 958, 914, 849, 774, 767, 744, 694, 652, 567, 543, 501, 458, 417 cm-1. Anal. Calc’d. for C13H12Br2CuN2S: C = 34.57%, H = 2.68%, N = 6.20%. Found: C = 34.17%, H = 3.36%, N = 6.44%. UV-vis (DMF, 0.050 mg/mL) lambdamax (epsilon) = 266 (7.6 * 103), 353.

The synthetic route of 7787-70-4 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Cross, Edward D.; Ang, M. Trisha C.; Richards, D. Douglas; Clemens, Amy C.; Muthukumar, Harshiny; McDonald, Robert; Woodfolk, London; Ckless, Karina; Bierenstiel, Matthias; Inorganica Chimica Acta; vol. 481; (2018); p. 69 – 78;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Some tips on 7787-70-4

As the paragraph descriping shows that 7787-70-4 is playing an increasingly important role.

7787-70-4, Copper(I) bromide is a copper-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Triethyl phosphite (183g, 1.1 mol) was added to a suspension of copper(I) bromide (164.5 g, 1.15 mol) in toluene (500 ml). The mixture was heated at 80C for 3 h with stirring, then left to cool and settle. The clear solution was decanted from the solid residue and the solvent evaporated on a rotary evaporator at 60C, to provide copper(I) bromide triethyl phosphite complex as a clear colourless oil, 336g (94% crude yield).

As the paragraph descriping shows that 7787-70-4 is playing an increasingly important role.

Reference£º
Patent; ASTRAZENECA AB; ASTRAZENECA UK LIMITED; WO2006/67416; (2006); A1;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”