Some tips on Copper(I) bromide

With the complex challenges of chemical substances, we look forward to future research findings about 7787-70-4,belong copper-catalyst compound

As a common heterocyclic compound, it belongs to copper-catalyst compound, name is Copper(I) bromide, and cas is 7787-70-4, its synthesis route is as follows.,7787-70-4

Complex 2 was obtained by a similar method as described for 1 using copper(I) bromide (0.032 g,0.22 mmol) in place of copper(I) iodide. Colorless crystals of 2 were obtained (Yield: 0.191 g, 90.3%). 1HNMR (400 M, CDCl3) delta: 7.51-7.36 (m, 22H, m,p-Ph + H3,H4-PC6H4-), 7.33-7.27 (m, 4H, H5,H6-PC6H4-),7.12-7.00 (m, 12H, o-Ph). 13C NMR (100 M, CDCl3) delta: 147.87, 147.67, 140.24, 140.16, 134.31, 134.17, 133.45,131.80, 131.07, 130.71, 130.14, 129.90, 128.93, 128.69, 127.93, 127.26 (Ar-C). 31P NMR (240 M, CDCl3) delta:-9.70 (s). Anal. Calcd for C48H38Cu2Br2P2: C, 59.83; H, 3.97. Found: C, 59.88; H, 3.97. MS (MALDI-TOF): m/zCalcd for [M-2Br-Cu + C24H19P]+, 739.1745, found 739.1747.

With the complex challenges of chemical substances, we look forward to future research findings about 7787-70-4,belong copper-catalyst compound

Reference£º
Article; Qi, Lei; Li, Qian; Hong, Xiao; Liu, Li; Zhong, Xin-Xin; Chen, Qiao; Li, Fa-Bao; Liu, Qian; Qin, Hai-Mei; Wong, Wai-Yeung; Journal of Coordination Chemistry; vol. 69; 24; (2016); p. 3692 – 3702;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Some tips on Copper(I) bromide

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Copper(I) bromide, 7787-70-4

7787-70-4, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Copper(I) bromide, cas is 7787-70-4,the copper-catalyst compound, it is a common compound, a new synthetic route is introduced below.

(a) Preparation of 1-(3,4-dimethoxyphenyl)indole-2-carboxylic acid ethyl ester 4-Bromoveratrole (8.8 g, 40 mmol), indole-2-carboxylic acid ethyl ester (1.9 g, 10 mmol), potassium carbonate (1.9 g), copper- (I) bromide (o.2 g), pyridine (2 ml) and nitrobenzene (10 ml) were stirred at 140 C. for 14 hours. After cooling to room temperature, the reaction mixture was applied onto a silica gel flash chromatography column (silica gel: 140 g). The column was subsequently eluted with toluene (500 ml), toluene/acetone (95:5, 500 ml) and toluene/acetone (90:10, 500 ml). 1-(3,4-Dimethoxyphenyl)indole-2-carboxylic acid ethyl ester was eluted with toluene/acetone (90:10) and gave colorless crystals upon evaporation of the solvent. The crystals were triturated with diisopropyl ether, collected by vacuum filtration and dried in the air. Yield: 3.0 g. (92% of theoretical yield) M.pt.: 126-128 C. Rf (toluene/acetone, 9:1)=0.53.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Copper(I) bromide, 7787-70-4

Reference£º
Patent; Shell Research Limited; US5399559; (1995); A;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Share a compound : 7787-70-4

7787-70-4, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,7787-70-4 ,Copper(I) bromide, other downstream synthetic routes, hurry up and to see

Name is Copper(I) bromide, as a common heterocyclic compound, it belongs to copper-catalyst compound, and cas is 7787-70-4, its synthesis route is as follows.

General procedure: CuI (0.095 g, 0.05 mmol) and PPh3 (0.262 g, 0.10 mmol) in 10 ml of MeCN were stirred for 1 h at 80 C to get a clear solution. To the reaction mixture, a solution of Hnor (0.082 g, 0.05 mmol) in methanol (5 mL) was added dropwise and left on stirring for 4 h. Then the mixture was filtered, and a colorless clear solution was obtained, which was left for slow evaporation leading to crystallization at room temperature. After a few days white crystals were obtained that were suitable for a single-crystal X-ray diffraction analysis.

7787-70-4, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,7787-70-4 ,Copper(I) bromide, other downstream synthetic routes, hurry up and to see

Reference£º
Article; Khan, Rais Ahmad; Dielmann, Fabian; Liu, Xue; Hahn, F. Ekkehardt; Al-Farhan, Khalid; Alsalme, Ali; Reedijk, Jan; Polyhedron; vol. 111; (2016); p. 173 – 178;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

The important role of Copper(I) bromide

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Copper(I) bromide, 7787-70-4

7787-70-4, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Copper(I) bromide, cas is 7787-70-4,the copper-catalyst compound, it is a common compound, a new synthetic route is introduced below.

A dichloromethane (2mL) solution of macrocycle 1 (12mg, 0.05mmol) was allowed to diffuse slowly through a solution of copper bromide (7.2mg, 0.05mmol) in acetonitrile (2mL) at-60C. Slow evaporation of the orange solution at room temperature afforded compound 5, in a quantitative yield, as colorless crystals suitable for an X-ray diffraction analysis. 1H NMR (CDCl3, 300MHz): delta 5.30-5.20 (m, 2H, =CH2), 4.60-2.20 (m, 16H, CH2). BrC10CuH18O2S2 (377.83): calcd C 31.79, H, 4.80; found: C 31.49, H, 4.52.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Copper(I) bromide, 7787-70-4

Reference£º
Article; Carel, Guillaume; Madec, David; Saponar, Alina; Saffon, Nathalie; Nemes, Gabriela; Rima, Ghassoub; Castel, Annie; Journal of Organometallic Chemistry; vol. 755; (2014); p. 72 – 77;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Downstream synthetic route of Copper(I) bromide

7787-70-4, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,7787-70-4 ,Copper(I) bromide, other downstream synthetic routes, hurry up and to see

It is a common heterocyclic compound, the copper-catalyst compound, Copper(I) bromide, cas is 7787-70-4 its synthesis route is as follows.

Triethyl phosphite (183g, 1.1 mol) was added to a suspension of copper(I) bromide (164.5 g, 1.15 mol) in toluene (500 ml). The mixture was heated at 80C for 3 h with stirring, then left to cool and settle. The clear solution was decanted from the solid residue and the solvent evaporated on a rotary evaporator at 60C, to provide copper(I) bromide triethyl phosphite complex as a clear colourless oil, 336g (94% crude yield).

7787-70-4, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,7787-70-4 ,Copper(I) bromide, other downstream synthetic routes, hurry up and to see

Reference£º
Patent; ASTRAZENECA AB; ASTRAZENECA UK LIMITED; WO2006/67412; (2006); A1;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Share a compound : 7787-70-4

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Copper(I) bromide, 7787-70-4

7787-70-4, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Copper(I) bromide, cas is 7787-70-4,the copper-catalyst compound, it is a common compound, a new synthetic route is introduced below.

General procedure: To a solution of (S,S)-iPr-pheboxH (0.051g, 0.173mmol) in dichloromethane (15mL), the corresponding copper(I) salt CuX (X=Cl, Br, I) (0.347mmol) was added and the mixture stirred at room temperature during 24h. Then, the reaction mixture was filtered via cannula, concentrated under reduced pressure to ca. 2mL and diethyl ether/n-hexane (1:2) (30mL) was added. The resulting solid was washed with n-hexane (3¡Á5mL) and vacuum-dried.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Copper(I) bromide, 7787-70-4

Reference£º
Article; Vega, Esmeralda; De Julian, Eire; Borrajo, Gustavo; Diez, Josefina; Lastra, Elena; Gamasa, M. Pilar; Polyhedron; vol. 94; (2015); p. 59 – 66;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Analyzing the synthesis route of 7787-70-4

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Copper(I) bromide, 7787-70-4

7787-70-4, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Copper(I) bromide, cas is 7787-70-4,the copper-catalyst compound, it is a common compound, a new synthetic route is introduced below.

General procedure: A suspension of copper(I) iodide (0.190 g, 1.0 mmol) and dppc (0.534 g, 1.0 mmol) in20 mL of CH2Cl2 was stirred for 6 h at room temperature to form a light-yellow precipitate.The precipitate was filtered off and purified by recrystallization from CH2Cl2/ethanolto give yellow crystals (Yield: 0.618 g, 85.3%).

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Copper(I) bromide, 7787-70-4

Reference£º
Article; Li, Qian; Wei, Qiong; Xie, Pei; Liu, Li; Zhong, Xin-Xin; Li, Fa-Bao; Zhu, Nian-Yong; Wong, Wai-Yeung; Chan, Wesley Ting-Kwok; Qin, Hai-Mei; Alharbi, Njud S.; Journal of Coordination Chemistry; vol. 71; 24; (2018); p. 4072 – 4085;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Extracurricular laboratory: Synthetic route of 7787-70-4

7787-70-4, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,7787-70-4 ,Copper(I) bromide, other downstream synthetic routes, hurry up and to see

It is a common heterocyclic compound, the copper-catalyst compound, Copper(I) bromide, cas is 7787-70-4 its synthesis route is as follows.

Example 1 2-(Carboxy-5-nitro-phenyl)malonic acid dimethyl ester A solution of 2-chloro-4-nitrobenzoic acid (75 g, 372 mmol) in dimethyl malonate (900 mL, 20 equivalents) was degassed with nitrogen for 15 min. Copper (I) bromide (5.4 g, 37 mmol) was added in one portion. Sodium methoxide (48.3 g, 894 mmol) was added in one portion to the solution while stirring and the contents exothermed to 48 C. Fifteen minutes later, the contents were heated to 70 C. for 24 hrs. The reaction was complete by nmr. Water (900 mL) was added to the cooled reaction followed by hexanes (900 mL). The aqueous layer was separated, toluene (900 mL) added, the solution filtered through Celite, and the aqueous layer separated. Fresh toluene (1800 mL) was added to the aqueous layer and the biphasic mixture acidified with 6 N aqueous HCl (90 mL). A white precipitate formed and the contents were stirred for 18 hrs. The product was filtered off and dried to give a white solid, 78.1 g (70%, mp 153 C.). IR 2923, 2853, 1750, 1728, 1705, 1458, 1376, 1352, 1305, 1261 cm-1.1 H NMR (CD3)2 SO delta8.37(d,J=2 Hz, 1H), 8.30 (d,J=1 Hz,2H), 5.82(s, 1H),3.83 (s,6H).13 C NMR (CD3)2 SOdelta168.0, 167.3, 149.4, 137.1, 135.8, 132.5, 125.4, 123.7, 54.5, 53.4.Anal. Calcd for C11 H10 NO8:C,48.49; H,3.73; N, 4.71. Found:C, 48.27; H,3.72; N, 4.76.

7787-70-4, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,7787-70-4 ,Copper(I) bromide, other downstream synthetic routes, hurry up and to see

Reference£º
Patent; Pfizer Inc; US5968950; (1999); A;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Application of 7787-70-4

7787-70-4, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,7787-70-4 ,Copper(I) bromide, other downstream synthetic routes, hurry up and to see

Name is Copper(I) bromide, as a common heterocyclic compound, it belongs to copper-catalyst compound, and cas is 7787-70-4, its synthesis route is as follows.

Copper bromide (2.223 g, 10.00 mmols) was added to 2-pyridone (1.936 g, 20.38 mmols) dissolved in 10 mL THF, 3 mL of water, and 0.859 g (10.6 mmol) concentrated HBr (?9 M). Dark crystals formed in solution after one week. The product was isolated by vacuum filtration, washed with cold THF, and air-dried to yield 3.41 g (82%) of brown crystals. Single crystals (brown prisms) were obtained by recrystallization in THF/water (10:3). IR (KBr): 3241m, 3150m, 3082m, 2936m (nu N-H), 1638s/1621s (C=O) 1586s, 1536s, 1466m, 1374s, 1277m, 1216m, 1156m, 1091m, 997m, 859m, 775s, 718m, 593m, 539m, 511m cm-1. Anal. Calc. for C20H20N4O4Cu2Br4: C, 29.04; H, 2.44; N, 6.77. Found: C, 28.79; H, 1.76; N, 6.60%.

7787-70-4, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,7787-70-4 ,Copper(I) bromide, other downstream synthetic routes, hurry up and to see

Reference£º
Article; Shortsleeves, Kelley C.; Turnbull, Mark M.; Seith, Christopher B.; Tripodakis, Emilia N.; Xiao, Fan; Landee, Christopher P.; Dawe, Louise N.; Garrett, David; De Delgado, Graciela Diaz; Foxman, Bruce M.; Polyhedron; vol. 64; (2013); p. 110 – 121;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

The important role of Copper(I) bromide

The chemical industry reduces the impact on the environment during synthesis,7787-70-4,Copper(I) bromide,I believe this compound will play a more active role in future production and life.

7787-70-4, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Copper(I) bromide, cas is 7787-70-4,the copper-catalyst compound, it is a common compound, a new synthetic route is introduced below.

General procedure: 0.028g (0.283mmol) of CuCl was added to 0.220g (0.133mmol) of [PPh4]2[1] dissolved in 20mL of MeCN solution. After stirring the resultant solution for 1hat RT, the yellowish brown solution formed. The solution was filtered, and the solvent was removed in vacuo. The precipitate was washed with Et2O and MeOH and extracted with CH2Cl2 which was then recrystallized with Et2O/MeOH/CH2Cl2 to give [PPh4]2[5a] (0.110g, 0.064mmol, 96% based on Se). Similarly, under the same reaction conditions, using CuBr and CuI, we have isolated a yellowish brown solid of [PPh4]2[5b] (98% based on Se) and [PPh4]2[5c] (71% based on Se), respectively, upon crystallization from Et2O/MeOH/CH2Cl2. [PPN]2[5a] and [PPN]2[5c] were synthesized according to a similar procedure.

The chemical industry reduces the impact on the environment during synthesis,7787-70-4,Copper(I) bromide,I believe this compound will play a more active role in future production and life.

Reference£º
Article; Shieh, Minghuey; Miu, Chia-Yeh; Liu, Yu-Hsin; Chu, Yen-Yi; Hsing, Kai-Jieah; Chiu, Jung-I; Lee, Chung-Feng; Journal of Organometallic Chemistry; vol. 815-816; (2016); p. 74 – 83;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”