Some tips on 578743-87-0

With the complex challenges of chemical substances, we look forward to future research findings about [1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride

As a common heterocyclic compound, it belongs to copper-catalyst compound, name is [1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride, and cas is 578743-87-0, its synthesis route is as follows.,578743-87-0

Chloro[l ,3-bis(2,6-di-i-propylphenyl)imidazol-2-ylidene]copper(I) (487.59 mg, 0.25 mmol) and silver triflate (64.2 mg, 0.25 mmol) were mixed under nitrogen in 25 mL flask and 10 mL of dry THF were added. Reaction mixture was stirred at RT for 30 minutes. Solution of 1 ,2-bis(diphenylphosphino)benzene (1 1 1.6 mg, 0.25 mmol) in dry THF (5 mL) was added. Reaction mixture was stirred at RT overnight. Resulting mixture was filtered through Celite and solvent was evaporated on rotovap. Recrystallization from CH2CI2 by vapor diffusion of Et20 gave 130 mg (49.6%) of white needle crystals. Structure confirmed by 1H-NMR spectrum of [(IPR)Cu(dppbz)]OTf (CDCb, 400MHz).

With the complex challenges of chemical substances, we look forward to future research findings about [1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride

Reference£º
Patent; THE UNIVERSITY OF SOUTHERN CALIFORNIA; THOMPSON, Mark; DJUROVICH, Peter; KRYLOVA, Valentina; WO2011/63083; (2011); A1;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

The important role of [1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride

With the complex challenges of chemical substances, we look forward to future research findings about [1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride

As a common heterocyclic compound, it belongs to copper-catalyst compound, name is [1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride, and cas is 578743-87-0, its synthesis route is as follows.,578743-87-0

In a flame-dried Schlenk tube under argon atmosphere, [CuCl(IPr)] (1) (0.3mmol, 150mg, 1 equiv.) and KCN (0.3mmol, 19mg, 1 equiv.) were introduced in degassed MeOH (5mL) and the reaction mixture was stirred under reflux (50C) for 4h. After returning to room temperature, the reaction mixture was concentrated to dryness under vacuum. The complex was then dissolved in dichloromethane and filtered through a pad of Celite and concentrated again under vacuum. A purification by recrystallization by slow diffusion of pentane in a THF solution of the complex led to the pure complex (4) as a white powder (143mg, 97% yield). 1H-NMR (CDCl3, 400MHz): delta 1.22 (d, J=6.9Hz, 12H), 1.27 (d, J=6.9Hz, 12H), 2.50 (sept, J=6.9Hz, 4H), 7.14 (s, 2H), 7.30 (d, J=7.8Hz, 4H), 7.50 (t, J=7.8Hz, 4H) ppm. (spectroscopic data in good agreement with the literature) [54].

With the complex challenges of chemical substances, we look forward to future research findings about [1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride

Reference£º
Article; Elie, Margaux; Mahoro, Gilbert Umuhire; Duverger, Eric; Renaud, Jean-Luc; Daniellou, Richard; Gaillard, Sylvain; Journal of Organometallic Chemistry; vol. 893; (2019); p. 21 – 31;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

New learning discoveries about 578743-87-0

The synthetic route of 578743-87-0 has been constantly updated, and we look forward to future research findings.

578743-87-0, [1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride is a copper-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,578743-87-0

In a dry double-mouth bottle to place Pt – 1 (0.0544 g, 0.1 mmol), CuClNHC (0.0488 g, 0.1 mmol), vacuum pumping and nitrogen cycle three times, then the nitrogen flow by adding 10 ml ethanol, stirring reflux reaction for 4 hours, cooling to room temperature, then added potassium hexafluorophosphate (0.184 g, 1 mmol), stirring at the room temperature reaction 2 hours, filtered, concentrated filtrate, ethanol: dichloromethane=1:10 column, get the orange solid 0.045 g, and the yield is 40%.

The synthetic route of 578743-87-0 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Jiangsu University Of Science And Technology; Shi Chao; Li Qiuxia; Zhang Xinghua; (24 pag.)CN108690096; (2018); A;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Simple exploration of 578743-87-0

As the paragraph descriping shows that 578743-87-0 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.578743-87-0,[1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride,as a common compound, the synthetic route is as follows.,578743-87-0

Chloro[l,3-bis(2,6-di-i-propylphenyl)imidazol-2-ylidene]copper(I) (195.1 mg, 0.4 mmol) and silver triflate (102.7 mg, 0.4 mmol) were mixed under nitrogen in 25 mL flask and 10 mL of dry THF were added. Reaction mixture was stirred at RT for 30 minutes.Solution of 2,2′-bipyridine (62.4 mg, 0.4 mmol) in dry THF (5 mL) was added. Reaction mixture turned orange and was stirred at RT overnight. Resulting mixture was filtered through Celite and solvent was evaporated on rotovap. Recrystallization from CH2CI2 by vapor diffusion of EtaO gave 215 mg (70.9%) of orange crystals. Anal, calcd. forC38H44CUF3N4O3S: C, 60.26; H, 5.86; N, 7.40; Found: C, 60.18; H, 5.82; N, 7.38. Structure was confirmed by iH-NMR spectrum of [(IPR)Cu(bipy)]OTf (CDCb, 400MHz).

As the paragraph descriping shows that 578743-87-0 is playing an increasingly important role.

Reference£º
Patent; THE UNIVERSITY OF SOUTHERN CALIFORNIA; THOMPSON, Mark; DJUROVICH, Peter; KRYLOVA, Valentina; WO2011/63083; (2011); A1;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Analyzing the synthesis route of 7787-70-4

7787-70-4 Copper(I) bromide 24593, acopper-catalyst compound, is more and more widely used in various fields.

7787-70-4, Copper(I) bromide is a copper-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

7787-70-4, General procedure: In a round bottom flask, copper(I) halide (0.1mmol, CuBr for 1 or CuI for 2) was dissolved in 2mL of MeCN. Under continuous stirring, a 5mL MeCN:EtOH (3:2) solution of HC(3-PhPz)3 (0.11mmol, 50mg) was added dropwise. The produced light brown solution was stirred at room temperature for 3h, then its volume was reduced by evaporation to ca. 2mL. Hexane (10mL) was added and the obtained precipitate was filtered off, recrystallized from a mixture of CH2Cl2 and hexane (1:1) to afford complexes 1 or 2 as colourless crystals. [CuBr(TpmPh)] (1): Yield (45.9mg) 78%. Elemental analysis calcd (%) for C28H22BrCuN6¡¤CH2Cl2: C 51.92, H 3.61, N 12.53; found: C 51.51, H 3.70, N 12.64. FTIR (KBr): nu (cm-1)=1532m, 1491 w, 1442m, 1391 w, 1342 w, 1324 w, 1299 w, 1268 w, 1242m, 1209m, 1095m, 1077m, 1038m, 798m, 756s, 688s. Far IR (CsI): nu (cm-1)=221m nu(Cu-Br). 1H NMR (300MHz, DMSO-d6, delta): 9.10 (s, 1H, HC(3-PhPz)3), 8.11 (br, 3H, 5-H-pz), 7.85 (br, 6H, o-H-Ph), 7.42 (br, 9H, m,p-H-Ph), 6.95 (br, 3H, 4-H-pz). 13C{1H} NMR (300MHz, DMSO-d6, delta): 152.14 (3-C-pz), 132.20 (Cquat-Ph), 131.82 (5-C-pz)), 128.76 (m-C-Ph), 128.32 (p-C-Ph), 125.53 (o-C-Ph), 104.57 (4-C-pz), 82.09 (HC(3-Phpz)3). ESI(+)MS in MeCN (m/z assignment, % intensity): 546 ({[HC(3-Phpz)3]Cu+MeCN}+, 100), 505 ({[HC(3-Phpz)3]Cu}+, 23).

7787-70-4 Copper(I) bromide 24593, acopper-catalyst compound, is more and more widely used in various fields.

Reference£º
Article; Mahmoud, Abdallah G.; Martins, Luisa M.D.R.S.; Guedes da Silva, M. Fatima C.; Pombeiro, Armando J.L.; Inorganica Chimica Acta; vol. 483; (2018); p. 371 – 378;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

New learning discoveries about 34946-82-2

34946-82-2, The synthetic route of 34946-82-2 has been constantly updated, and we look forward to future research findings.

34946-82-2, Copper(II) trifluoromethanesulfonate is a copper-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

The copper(II) complexes with terpy ligand, [Cu(terpy)(ClO4)2(H2O)] (1) and [Cu(terpy)2](CF3SO3)2¡¤2H2O (2), were synthesized by modification of a previously described method for the preparation of [Cu(terpy)(H2O)](CF3SO3)2 complex [42]. The solution of 1.0mmol of terpy (233.3mg) in 2.0mL of methanol for 1 and ethanol for 2 was added slowly under stirring to the solution containing 1.0mmol of the corresponding copper(II) salt (370.5mg of Cu(ClO4)2¡¤6H2O (1) and 361.7mg of Cu(CF3SO3)2 (2)) in 5.0mL of water. The reaction mixture was stirred at room temperature for 3h. The blue crystals of 1 and 2 suitable for single-crystal X-ray analysis were grown by slow evaporation of the resulting solutions at room temperature. These crystals were filtered off and dried at ambient temperature. The yield (calculated on the basis of terpy) was 73% (375.0mg) for 1 and 78% (337.1mg) for 2.

34946-82-2, The synthetic route of 34946-82-2 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Gli?i?, Biljana ?.; Nikodinovic-Runic, Jasmina; Ilic-Tomic, Tatjana; Wadepohl, Hubert; Veselinovi?, Aleksandar; Opsenica, Igor M.; Djuran, Milo? I.; Polyhedron; vol. 139; (2018); p. 313 – 322;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Analyzing the synthesis route of Copper(II) trifluoromethanesulfonate

With the synthetic route has been constantly updated, we look forward to future research findings about Copper(II) trifluoromethanesulfonate,belong copper-catalyst compound

As a common heterocyclic compound, it belong copper-catalyst compound,Copper(II) trifluoromethanesulfonate,34946-82-2,Molecular formula: C2CuF6O6S2,mainly used in chemical industry, its synthesis route is as follows.,34946-82-2

A solution of Cu(OTf )2 (0.089 g, 0.25 mmol) in 1 mL of CH3CN was added to a stirred solution of 2-pina (0.050 g, 0.25 mmol) in 1 mL of CH3CN. The blue suspension was stirred for 1.5 h and the solvent was removed under reduced pressure. The resulting blue solid was washed with Et2O (5 mL ¡Á 3). Dissolving the product in DMF and vapor diffusion of Et2O into the blue solution at room temperature led to green crystals suitable for X-ray crystallographic characterization (0.095 g, 54% yield). Anal. Calcd for C19H23N5O9F6S2Cu: C, 32.28; H, 3.28; N, 9.90. Found: C, 31.96; H, 3.03; N, 10.15. FT-IR (cm-1): 1644, 1619, 1546, 1457, 1431, 1386, 1369, 1243, 1223, 1147, 1106, 1028, 862, 759, 698, 667, 634, 572, 516, 418.

With the synthetic route has been constantly updated, we look forward to future research findings about Copper(II) trifluoromethanesulfonate,belong copper-catalyst compound

Reference£º
Article; McMoran, Ethan P.; Mugenzi, Clement; Fournier, Kyle; Draganjac, Mark; Tony, Donavon; Jeong, Kwangkook; Powell, Douglas R.; Yang, Lei; Journal of Coordination Chemistry; vol. 69; 3; (2016); p. 375 – 388;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Downstream synthetic route of Copper(I) bromide

With the synthetic route has been constantly updated, we look forward to future research findings about Copper(I) bromide,belong copper-catalyst compound

As a common heterocyclic compound, it belongs to quinuclidine compound,Quinuclidine-4-carboxylic acid hydrochloride,40117-63-3,Molecular formula: C8H14ClNO461,mainly used in chemical industry, its synthesis route is as follows.,7787-70-4

Copper bromide (0.079 g, 0.55 mmol) was added to 30 mL of ppdq (0.200 g, 0.55 mmol) In a solution of CH2Cl2, the mixture was stirred at room temperature to form a red suspension, the reaction mixture was filtered, and the solvent was removed under reduced pressure. A red powder was obtained which was recrystallized from CH2Cl2 to give red crystals: 0.238 g, 85.3%.

With the synthetic route has been constantly updated, we look forward to future research findings about Copper(I) bromide,belong copper-catalyst compound

Reference£º
Patent; Hubei University; Liu Li; Guo Bangke; (13 pag.)CN109970769; (2019); A;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Some tips on 34946-82-2

34946-82-2, As the paragraph descriping shows that 34946-82-2 is playing an increasingly important role.

34946-82-2, Copper(II) trifluoromethanesulfonate is a copper-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Was added to the Schlenk tube Cu(OTf)2 (0.01mmol), ligand (Ra,S,S)-I-Ph (0.01mmol) N2 protection, the solvent was added CHCl3(2 mL), stirred at room temperature for 4 hours ligand, and concentrated under reduced pressure, vacuum drained, i.e., quantitative complex to give [(Ra,S,S)-I-Ph]Cu(OTf)2.

34946-82-2, As the paragraph descriping shows that 34946-82-2 is playing an increasingly important role.

Reference£º
Patent; Zhejiang University; Lin Xufeng; Gu Haorui; Sun Weiye; (21 pag.)CN108794420; (2018); A;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Simple exploration of 7787-70-4

As the paragraph descriping shows that 7787-70-4 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.7787-70-4,Copper(I) bromide,as a common compound, the synthetic route is as follows.

7787-70-4, General procedure: [CuBr(CNR)3] (1-4). Any one of the isocyanides CNR (R=Xyl, 2-Cl-6-MeC6H3, 2-Naphtyl, Cy) (3.1mmol) was added to a suspension of CuBr (143mg, 1.0mmol) in chloroform (5mL) and the reaction mixture was stirred at RT for 1h. The solvent was removed in vacuo and the product was recrystallized by slow concentration of a CH2Cl2/hexane solution at RT to give colorless (1, 2, and 4) or orange (3) crystalline solid.

As the paragraph descriping shows that 7787-70-4 is playing an increasingly important role.

Reference£º
Article; Melekhova, Anna A.; Novikov, Alexander S.; Luzyanin, Konstantin V.; Bokach, Nadezhda A.; Starova, Galina L.; Gurzhiy, Vladislav V.; Kukushkin, Vadim Yu.; Inorganica Chimica Acta; vol. 434; (2015); p. 31 – 36;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”