Some tips on 34946-82-2

34946-82-2, As the paragraph descriping shows that 34946-82-2 is playing an increasingly important role.

34946-82-2, Copper(II) trifluoromethanesulfonate is a copper-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

L (0.0424g, 0.2mmol), Cu (CF 3SO 3) 2(0.0691g,0.2mmol)H 2O (6mL), CH 3CN (4mL),hot water 100 O slow C down to room temperature after three days. After opening theautoclave there for X- ray diffraction analysis of the yellow rod-like crystals. Yield:35% (calculated based on L).

34946-82-2, As the paragraph descriping shows that 34946-82-2 is playing an increasingly important role.

Reference£º
Patent; Tianjin Normal University; Wang, Ying; (11 pag.)CN104447810; (2016); B;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Analyzing the synthesis route of 34946-82-2

With the synthetic route has been constantly updated, we look forward to future research findings about Copper(II) trifluoromethanesulfonate,belong copper-catalyst compound

As a common heterocyclic compound, it belong copper-catalyst compound,Copper(II) trifluoromethanesulfonate,34946-82-2,Molecular formula: C2CuF6O6S2,mainly used in chemical industry, its synthesis route is as follows.,34946-82-2

LigandH2L2 (100 mg, 0.275 mmol)was added to the solutionof Cu(OTf)2 (298 mg, 0.826 mmol) in 10mLMeNO2 forminga clear light blue coloured solution. The reaction mixture wasstirred for 30 min at 50 C. The solution was filtered andleft in open air for slow evaporation. X-ray quality light bluecrystals were collected after 24 h. (Yield: 64%). Anal. Calcd.for C24H36Cu4F12N10O30S4: C, 18.54; H, 2.33; N, 9.01%.Found. C, 18.14; H, 2.82; N, 8.74%. IR (nu, cm-1): 3424.20(H2O); 1681.07 (C=O); 1638.57 (C=N).

With the synthetic route has been constantly updated, we look forward to future research findings about Copper(II) trifluoromethanesulfonate,belong copper-catalyst compound

Reference£º
Article; Lakma, Avinash; Hossain, Sayed Muktar; Pradhan, Rabindra Nath; Singh, Akhilesh Kumar; Journal of Chemical Sciences; vol. 130; 7; (2018);,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Analyzing the synthesis route of 7787-70-4

With the synthetic route has been constantly updated, we look forward to future research findings about Copper(I) bromide,belong copper-catalyst compound

As a common heterocyclic compound, it belong copper-catalyst compound,Copper(I) bromide,7787-70-4,Molecular formula: BrCu,mainly used in chemical industry, its synthesis route is as follows.,7787-70-4

General procedure: A solution of cuprous chloride (5.8 mg, 0.058 mmol) in acetonitrile(10 mL) was added dropwise to a well stirred solution of 1(30 mg, 0.058 mmol) in dichloromethane (10 mL) at room temperaturewith constant stirring. After stirring for 6 h, the solvent wasremoved under reduced pressure and the residue obtained wasfurther washed with petroleum ether to give 4 as white solid product.Yield

With the synthetic route has been constantly updated, we look forward to future research findings about Copper(I) bromide,belong copper-catalyst compound

Reference£º
Article; Bhat, Sajad A.; Mague, Joel T.; Balakrishna, Maravanji S.; Inorganica Chimica Acta; vol. 443; (2016); p. 243 – 250;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Simple exploration of 34946-82-2

34946-82-2, As the paragraph descriping shows that 34946-82-2 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.34946-82-2,Copper(II) trifluoromethanesulfonate,as a common compound, the synthetic route is as follows.

To a solution of ligand L1 (50 mg, 0.2 mmol) in ethyl acetate(3 mL) was added a saturated solution of copper(II) trifluoromethanesulfonate(Cu(OTf)2) in ethyl acetate (2 mL).A blue-green precipitate appeared within 10 min, whichwas transformed into green-brown hexagonal crystalsduring slow evaporation of the solvent on standing withair contact. The crystals were collected by filtration withsuction, washed with a small volume of ethyl acetate toremove co-precipitated Cu(OTf)2. Yield: 85 mg (95%); M.p.272-274C. – IR (KBr): = 3262 m br (NH), 3147 w, 3103w, 1645 m, 1597 s, 1296 vs, 1253 vs, 1228 s, 1148 s, 1076 m,1059 m, 1029 vs, 757 w, 729 s, 629 s, 575 m, 520 m cm-1. -MS ((+)-MALDI-TOF): m/z (%) = 666.24 (100) [M-CF3SO3]+,516.26 (15) [M-2CF3SO3-H]+, 228.16 (74) [L1+H]+. – Anal. forC26H26CuF6N10O6S2 (816.21): calcd. C 38.26, H 3.21, N 17.16;found C 38.25, H 3.49, N 16.92.

34946-82-2, As the paragraph descriping shows that 34946-82-2 is playing an increasingly important role.

Reference£º
Article; Schroeder, Sven; Frey, Wolfgang; Maas, Gerhard; Zeitschrift fur Naturforschung, B: Chemical Sciences; vol. 71; 6; (2016); p. 683 – 696;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Downstream synthetic route of 34946-82-2

34946-82-2, The synthetic route of 34946-82-2 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.34946-82-2,Copper(II) trifluoromethanesulfonate,as a common compound, the synthetic route is as follows.

LigandH2L2 (100 mg, 0.275 mmol)was added to the solutionof Cu(OTf)2 (298 mg, 0.826 mmol) in 10mLMeNO2 forminga clear light blue coloured solution. The reaction mixture wasstirred for 30 min at 50 C. The solution was filtered andleft in open air for slow evaporation. X-ray quality light bluecrystals were collected after 24 h. (Yield: 64%). Anal. Calcd.for C24H36Cu4F12N10O30S4: C, 18.54; H, 2.33; N, 9.01%.Found. C, 18.14; H, 2.82; N, 8.74%. IR (nu, cm-1): 3424.20(H2O); 1681.07 (C=O); 1638.57 (C=N).

34946-82-2, The synthetic route of 34946-82-2 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Lakma, Avinash; Hossain, Sayed Muktar; Pradhan, Rabindra Nath; Singh, Akhilesh Kumar; Journal of Chemical Sciences; vol. 130; 7; (2018);,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

New learning discoveries about 7787-70-4

The synthetic route of 7787-70-4 has been constantly updated, and we look forward to future research findings.

7787-70-4, Copper(I) bromide is a copper-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

7787-70-4, 2-(Carboxy-5-nitrophenyl)malonic acid dimethyl ester (8) A solution of 2-chloro-4-nitrobenzoic acid (75 g, 372 mmol) in dimethyl malonate (900 mL) was perfused with nitrogen for 15 min. Sodium methoxide (48.3 g, 894 mmol) was added in one portion and the contents exothermed to 48 C. Fifteen minutes later, copper (I) bromide (5.4 g, 37 mmol) was added in one portion and the contents were heated to 70 C. for 24 hrs. The reaction, which was 70% complete as determined by NMR, was subsequently heated to 85 C. for 5 hrs to completely consume the remaining 2-chloro4-nitrobenzoic acid. Water (900 mL) was added to the cooled reaction followed by hexanes (900 mL). The aqueous layer was separated, toluene (900 mL) was added, the mixture was filtered and aqueous layer separated. Fresh toluene (1800 mL) was added to the aqueous layer and the biphasic mixture acidified with 6N aqueous HCl (90 mL). A white precipitate formed and the contents were stirred for 18 hrs. The product was filtered off and dried to give a white solid (78.1 g, 70%) mp 153 C. 1 H NMR (DMSO) delta8.37 (d, J=2 Hz, 1H), 8.30 (d, J=1 Hz, 2H), 5.82 (s, 1H), 3.83 (s, 6H). 13 C NMR (DMSO) delta168.0, 167.3, 149.4, 137.1, 135.8, 132.5, 125.4, 123.7, 54.5, 53.4. Anal. Calcd for C11 H10 NO8: C, 48.49; H, 3.73; N, 4.71. Found: C, 48.27; H, 3.72; N, 4.76.

The synthetic route of 7787-70-4 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Pfizer Inc; US6121283; (2000); A;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

New learning discoveries about 34946-82-2

The synthetic route of 34946-82-2 has been constantly updated, and we look forward to future research findings.

34946-82-2, Copper(II) trifluoromethanesulfonate is a copper-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Compound 7.5 (4.7 mg, 0.0086 mmol) and copper (II) trifluoromethansulfonate (3.1 mg, 0.0086 mmol) were added to 0.5 mL of MeOH and allowed to stir at room temperature for 2 hours. The MeOH was removedin vacuoto yield a white solid (7.8 mg, quantitative)., 34946-82-2

The synthetic route of 34946-82-2 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; da Silva, Sara R.; Paiva, Stacey-Lynn; Bancerz, Matthew; Geletu, Mulu; Lewis, Andrew M.; Chen, Jijun; Cai, Yafei; Lukkarila, Julie L.; Li, Honglin; Gunning, Patrick T.; Bioorganic and Medicinal Chemistry Letters; vol. 26; 18; (2016); p. 4542 – 4547;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Analyzing the synthesis route of 34946-82-2

34946-82-2 Copper(II) trifluoromethanesulfonate 2734996, acopper-catalyst compound, is more and more widely used in various fields.

34946-82-2, Copper(II) trifluoromethanesulfonate is a copper-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: Copper(II) complexes with 4,7-phenanthroline, [Cu(NO3)2(4,7-Hphen)2](NO3)2 (1) and [Cu(CF3SO3)(4,7-phen)2(H2O)2]CF3SO3 (2)were synthesized according to the modified procedure for thepreparation of copper(II) complexes with aromatic N-heterocycles[22]. The solution of 0.5 mmol of CuX2 salt (120.8 mg of Cu(NO3)2-3H2O for 1 and 180.8 mg of Cu(CF3SO3)2 for 2) in 5.0 mL of ethanolwas added slowly under stirring to the solution containing anequimolar amount of 4,7-phen (90.1 mg) in 5.0 mL of ethanol.The reaction mixture was stirred at room temperature for 3-4 h.Complex 1 crystallized from the mother ethanol solution after itscooling in the refrigerator for three days, while those of complex2 were obtained after recrystallization of the solid product precipitatedfrom the reaction mixture in 10.0 mL of acetonitrile. Theblue crystals of 1 and green crystals of 2 suitable for single-crystalX-ray crystallography were filtered off and dried at ambient temperature.Yield (calculated on the basis of 4,7-phen): 99.4 mg(59%) for 1 and 127.0 mg (67%) for 2., 34946-82-2

34946-82-2 Copper(II) trifluoromethanesulfonate 2734996, acopper-catalyst compound, is more and more widely used in various fields.

Reference£º
Article; Stevanovi?, Nevena Lj.; Andrejevi?, Tina P.; Crochet, Aurelien; Ilic-Tomic, Tatjana; Dra?kovi?, Nenad S.; Nikodinovic-Runic, Jasmina; Fromm, Katharina M.; Djuran, Milo? I.; Gli?i?, Biljana ?.; Polyhedron; vol. 173; (2019);,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Simple exploration of 7787-70-4

As the paragraph descriping shows that 7787-70-4 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.7787-70-4,Copper(I) bromide,as a common compound, the synthetic route is as follows.

7787-70-4, In a round bottom flask, copper(I) bromide (0.3mmol, 0.043g) was dissolved in 5mL of degassed MeCN. Under continuous stirring and in a N2-atmosphere, a 2mL degassed NCMe solution of HC(3,5-Me2pz)3 (0.33mmol, 0.1g) was added dropwise. The mixture was stirred at room temperature for 3h, then its volume was reduced to ca. 2mL by evaporation. Hexane (10mL) was added, and the obtained precipitate was filtered off and recrystallized from a mixture if CH2Cl2 and hexane (1:1) to afford complexes 3 as off-white powder. [CuBr(Tpm*)] (3): Yield (108.9mg) 82%. Elemental analysis calcd (%) for C16H22BrCuN6: C 43.49, H 5.02, N 19.02; found: C 43.45, H 5.51, N 19.62. FTIR (KBr): nu (cm-1)=3397m, 2962m, 2925m, 1562s, 1455s, 1412s, 1383s, 1303s, 1239s, 1153 w, 1112 w, 1035m, 980m, 905m, 845s, 824m, 796m, 695s. Far IR (CsI): nu (cm-1)=216m nu(Cu-Br). 1H NMR (300MHz, DMSO-d6, delta): 7.83 (s, 1H, HC(3,5-Me2pz)3), 6.04 (s, 3H, 4-H-pz), 2.40, 2.22 (s, s, 9H, 9H, 3,5-Me). 13C{1H} NMR (300MHz, DMSO-d6, delta): 149.12 (3-Cquat-pz), 140.28 (5-Cquat-pz), 106.44 (4-C-pz), 70.67 (HC(3,5-Me2pz)3), 13.48,10.37 (3,5-Me). ESI(+)MS in MeCN (m/z assignment, % intensity): 204 ({[HC(3,5-Me2pz)3]Cu+MeCN}+, 100), 361 ({[HC(3,5-Me2pz)3]Cu}+, 26).

As the paragraph descriping shows that 7787-70-4 is playing an increasingly important role.

Reference£º
Article; Mahmoud, Abdallah G.; Martins, Luisa M.D.R.S.; Guedes da Silva, M. Fatima C.; Pombeiro, Armando J.L.; Inorganica Chimica Acta; vol. 483; (2018); p. 371 – 378;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Analyzing the synthesis route of 7787-70-4

With the synthetic route has been constantly updated, we look forward to future research findings about Copper(I) bromide,belong copper-catalyst compound

As a common heterocyclic compound, it belong copper-catalyst compound,Copper(I) bromide,7787-70-4,Molecular formula: BrCu,mainly used in chemical industry, its synthesis route is as follows.,7787-70-4

General procedure: HLBAP (0.525 g, 1 mmol) and triethylamine (0.28 mL, 2 mmol) were dissolved in a 2:1 acetonitrile/dichloromethane mixture (45 ml), and then copper salt with the corresponding anion (1 mmol) was added. The reaction mixture was stirred for 4 h at room temperature in the presence of air. X-ray quality red brown crystals were grown from a 1:1 solvent mixtureof dichloromethane/methanol.

With the synthetic route has been constantly updated, we look forward to future research findings about Copper(I) bromide,belong copper-catalyst compound

Reference£º
Article; Safaei, Elham; Bahrami, Hadiseh; Wojtczak, Andrzej; Alavi, Saman; Jagli?i?, Zvonko; Polyhedron; vol. 122; (2017); p. 219 – 227;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”