Analyzing the synthesis route of 142-71-2

With the synthetic route has been constantly updated, we look forward to future research findings about Copper(II) acetate,belong copper-catalyst compound

As a common heterocyclic compound, it belong copper-catalyst compound,Copper(II) acetate,142-71-2,Molecular formula: C4H6CuO4,mainly used in chemical industry, its synthesis route is as follows.,142-71-2

A mixture of 0.04 g (0.065 mmol) of porphin 1 and 0.118 g (0.65 mmol) of Cu(OAc)2 in 40 mL of dimethylformamide was heated under reflux for 15 s. The reaction mixture was cooled, water and solid NaCl was added, the precipitate was separated by filtration, washed with water, dried, and chromatographed on aluminum oxide using chloroform as an eluent to give 0.038 g (0.0562 mmol) (86%) of compound 5. MS (m/z (Irel, %)): 675 (97) [M]+; for C44H28N4Cu calcd.: 676. IR (nu, cm-1): 2926 s, 2855 m nu(C-H, Ph), 1694 w,1598 m 1489 s nu(C=C, Ph), 1441 m nu(C=N), 1371 m, 1346 s nu(C-N), 1146 s, 1071 s delta(C-H, Ph), 1005 s nu(C-C), 861 m, 794 m gamma(C-H, pyrrole ring), 742 m, 696 m gamma(C-H, h), 480 nu(Cu-N).

With the synthetic route has been constantly updated, we look forward to future research findings about Copper(II) acetate,belong copper-catalyst compound

Reference£º
Article; Chizhova; Shinkarenko; Zav?yalov; Mamardashvili, N. Zh.; Russian Journal of Inorganic Chemistry; vol. 63; 6; (2018); p. 732 – 735; Zh. Neorg. Khim.; vol. 63; 6; (2018); p. 695 – 699,5;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Analyzing the synthesis route of 6046-93-1

With the synthetic route has been constantly updated, we look forward to future research findings about Copper(II) acetate hydrate,belong copper-catalyst compound

As a common heterocyclic compound, it belong copper-catalyst compound,Copper(II) acetate hydrate,6046-93-1,Molecular formula: C4H8CuO5,mainly used in chemical industry, its synthesis route is as follows.,6046-93-1

General procedure: A solution of Cu(OAc)2¡¤H2O (4.6 mmol) in methanol (10 mL) was added to a solution of corresponding porphyrin (1.15 mmol) in methylene chloride (50 mL). The resulting mixture was stirred flor 1.5 h at room temperature with TLC monitoring (CHCl3-hexane 1:2). Then the reaction mixture was poured into water and extracted with methylene chloride. The organic layer was dried over Na2SO4, and the solvent was removed under reduced pressure. The residue was used without purification. 5,10,15,20-(tetraphenylporphyrinato)copper(II) (13) [56] (757 mg,yield 97%). UV-Vis (CH2Cl2) >max, (j10-3) nm: 414 (611), 539 (29).APCI-MS Found: [M]+ 676.16; ?C44H28CuN4? requires [M]+ 676.26.

With the synthetic route has been constantly updated, we look forward to future research findings about Copper(II) acetate hydrate,belong copper-catalyst compound

Reference£º
Article; Ol’shevskaya, Valentina A.; Alpatova, Viktoriya M.; Radchenko, Alexandra S.; Ramonova, Alla A.; Petrova, Albina S.; Tatarskiy, Victor V.; Zaitsev, Andrei V.; Kononova, Elena G.; Ikonnikov, Nikolay S.; Kostyukov, Alexey A.; Egorov, Anton E.; Moisenovich, Mikhail M.; Kuzmin, Vladimir A.; Bragina, Natalya A.; Shtil, Alexander A.; Dyes and Pigments; vol. 171; (2019);,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Analyzing the synthesis route of 13395-16-9

With the synthetic route has been constantly updated, we look forward to future research findings about Bis(acetylacetone)copper,belong copper-catalyst compound

As a common heterocyclic compound, it belong copper-catalyst compound,Bis(acetylacetone)copper,13395-16-9,Molecular formula: C10H16CuO4,mainly used in chemical industry, its synthesis route is as follows.,13395-16-9

General procedure: CZTS nanoparticles were synthesized at different temperatures(220-320 C) for 3 hours and for variousreaction times (2-5 hours) at 240 C, usinghigh-temperature arrested precipitation in the coordinatingsolvent, oleylamine (OLA).15 Under the reactiontime of 3 hours, the reactants for synthesis ofCZTS nanoparticles didn?t dissolve enough in OLA.

With the synthetic route has been constantly updated, we look forward to future research findings about Bis(acetylacetone)copper,belong copper-catalyst compound

Reference£º
Article; Kim, Donguk; Kim, Minha; Shim, Joongpyo; Kim, Doyoung; Choi, Wonseok; Park, Yong Seob; Choi, Youngkwan; Lee, Jaehyeong; Journal of Nanoscience and Nanotechnology; vol. 16; 5; (2016); p. 5082 – 5086;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Analyzing the synthesis route of 5,10,15,20-Tetraphenyl-21H,23H-porphine copper(II)

With the synthetic route has been constantly updated, we look forward to future research findings about 5,10,15,20-Tetraphenyl-21H,23H-porphine copper(II),belong copper-catalyst compound

As a common heterocyclic compound, it belong copper-catalyst compound,5,10,15,20-Tetraphenyl-21H,23H-porphine copper(II),14172-91-9,Molecular formula: C44H30CuN4,mainly used in chemical industry, its synthesis route is as follows.,14172-91-9

0.0157 g (0.088 mmol) of N-bromosuccinimide was added to a solution of 0.04 g (0.059 mmol) of Cuin 20 mL of l3, and the mixture was refluxed during 30 min. The operation was repeated three times,total amount of the added N-bromosuccinimide being0.047 g (0.26 mmol). After addition of the last portion of the reactant, the mixture was refluxed during 2 hand cooled to ambient; a solution of 0.07 g (0.44 mmol)of bromine in 5 mL of CHCl3 was then added atstirring. The resulting mixture was kept at 20 during about 24 h. Excess of bromine was removed by washing the reaction mixture with 15 mL of 20%aqueous solution of Na2S2O3. The organic layer was washed with water and dried over Na2SO4. The solvent was removed, and the residue was purified by chromatographyon alumina eluting with chloroform,followed by recrystallization from ethanol. Yield 0.055 g(72%, 0.0421 mmol).

With the synthetic route has been constantly updated, we look forward to future research findings about 5,10,15,20-Tetraphenyl-21H,23H-porphine copper(II),belong copper-catalyst compound

Reference£º
Article; Maltseva; Zvezdina; Chizhova; Mamardashvili, N. Zh.; Russian Journal of General Chemistry; vol. 86; 1; (2016); p. 102 – 109; Zh. Obshch. Khim.; vol. 86; 1; (2016); p. 110 – 117,8;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Analyzing the synthesis route of 14172-91-9

With the synthetic route has been constantly updated, we look forward to future research findings about 5,10,15,20-Tetraphenyl-21H,23H-porphine copper(II),belong copper-catalyst compound

As a common heterocyclic compound, it belong copper-catalyst compound,5,10,15,20-Tetraphenyl-21H,23H-porphine copper(II),14172-91-9,Molecular formula: C44H30CuN4,mainly used in chemical industry, its synthesis route is as follows.,14172-91-9

General procedure: To a solution of corresponding porphyrin, the copper complex(1.13 mmol) in methylene chloride (90 mL) Cu(NO3)2¡¤3H2O(2.30 mmol) in the mixture of acetic acid (5 mL) and acetic anhydride (2 mL) was added, and reaction mixture was stirred for 3 h at room temperature, with TLC monitoring (CHCl3-hexane 1:2). After completion of the reaction the solution was washed with water (200 mL), then with Na2CO3 solution, and the organic phase was separated and dried over Na2SO4. After removal of the solvent under reduced pressure, the residue was purified by column chromatography on silica gel using a CH2Cl2-hexane system (3:7).

With the synthetic route has been constantly updated, we look forward to future research findings about 5,10,15,20-Tetraphenyl-21H,23H-porphine copper(II),belong copper-catalyst compound

Reference£º
Article; Ol’shevskaya, Valentina A.; Alpatova, Viktoriya M.; Radchenko, Alexandra S.; Ramonova, Alla A.; Petrova, Albina S.; Tatarskiy, Victor V.; Zaitsev, Andrei V.; Kononova, Elena G.; Ikonnikov, Nikolay S.; Kostyukov, Alexey A.; Egorov, Anton E.; Moisenovich, Mikhail M.; Kuzmin, Vladimir A.; Bragina, Natalya A.; Shtil, Alexander A.; Dyes and Pigments; vol. 171; (2019);,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Some tips on 14172-91-9

As the paragraph descriping shows that 14172-91-9 is playing an increasingly important role.

14172-91-9, 5,10,15,20-Tetraphenyl-21H,23H-porphine copper(II) is a copper-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

(a) N-Bromosuccinimide (0.105 g, 0.592 mmol) was added with stirring to a solution of 0.02 g (0.0296 mmol) of complex 5 in a mixture of 10 mL of chloroform and 1 mL of DMF, the mixture was stirred at ambient temperature for 8 h. The reaction mixture was concentrated to minimal volume, 10 mL of DMF, water, and solid NaCl were added, the precipitate was separated by filtration, washed with water, acetonitrile, dried, chromatographed on aluminum oxide using chloroform as an eluent, and reprecipitated from ethanol. Yield 0.026 g (0.0199 mmol), 68%. MS (m/z (Irel, %)): 1306.6 (98) [M]+; for C44H20N4Br8Cu calcd.: 1307.5. IR (nu, cm-1): 2925 s, 2853 m nu(C-H, Ph), 1680 w, 1488 m nu(C=C, Ph), 1467 w, 1444 w nu(C=N), 1366 w, 1351 w nu(C-N), 1175 m, 1145 w, 1108 w delta(C-H, Ph), 1024 s nu(C-C), 924 m, 858 m gamma(C-H, pyrrole ring), 756 m, 734 m, 695 m gamma(C-H, Ph). For C44H20N4Br8Cu anal. calcd. (%): C, 40.42; N, 4.29; H, 1.54; Br, 48.89. Found (%): C, 40.15; N, 4.16; H, 1.59; Br, 48.71.

As the paragraph descriping shows that 14172-91-9 is playing an increasingly important role.

Reference£º
Article; Chizhova; Shinkarenko; Zav?yalov; Mamardashvili, N. Zh.; Russian Journal of Inorganic Chemistry; vol. 63; 6; (2018); p. 732 – 735; Zh. Neorg. Khim.; vol. 63; 6; (2018); p. 695 – 699,5;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Share a compound : Bis(acetylacetone)copper

As the rapid development of chemical substances, we look forward to future research findings about 13395-16-9

Bis(acetylacetone)copper, cas is 13395-16-9, it is a common heterocyclic compound, the copper-catalyst compound, its synthesis route is as follows.

Complex (6) C26H33Cu2N5O14 (FW = 734.66) was prepared by refluxing a hot ethanolic solution of the copper(II) complex (2), (473 mg, 1 mmol) with a hot ethanolic solution of the copper acetyl acetonate (188 mg, 1 mmol). The reaction mixture was refluxed for three hours with stirring. The precipitate so formed, was filtered off, washed with ethanol and dried in vacuum desiccators over CaCl2, Yield 72%, 5.29 gm. Color: Dark brown, m.p. > 300, Elemental Analyses. Calc.: C, 42.51; H, 4.53; N, 9.53; Cu, 15.30; Found: C, 42.21; H, 4.43; N, 9.66; Cu,16.97. IR (KBr, cm-1), 3448(br) nu(H2O), 1685 nu(C=OAcAc), 1670 nu(C=OAcetyl), 1602 nu(C=Nimine), 1570 nu(C=Noxime), 1285 nu(C-OAcAc), 1168 nu(N-O), 670, nu(M-O), 628 nu(M?O), 572 nu(M-N), 510 nu(M?N). Molar conductance (Lambda) is 28.20 Omega-1 cm2 mol-1.

As the rapid development of chemical substances, we look forward to future research findings about 13395-16-9

Reference£º
Article; El-Tabl, Abdou S.; Shakdofa, Mohamad M.E.; Whaba, Mohammed Ahmed; Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy; vol. 136; PC; (2015); p. 1941 – 1949;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Share a compound : 6046-93-1

With the rapid development of chemical substances, we look forward to future research findings about Copper(II) acetate hydrate

Copper(II) acetate hydrate, cas is 6046-93-1, it is a common heterocyclic compound, the copper-catalyst compound, its synthesis route is as follows.

meso-Tetraphenylporphyrin (TPP)(2 g, 3.25 mmol) was dissolved in CH2Cl2 (160 mL) and methanol (50 mL). Cu(OAc)2¡¤H2O (1.2 g,5.85 mmol) was added and the mixture was heated to reflux for 2 h until all starting material wasconsumed (TLC, UV-vis). Solvents were evaporated to give a red-purple residue that was filteredthrough a short plug of silica. After filtration, the product 3 was obtained as a dark purple sparklingsolid (2.2 g, 3.25 mmol, 99%)

With the rapid development of chemical substances, we look forward to future research findings about Copper(II) acetate hydrate

Reference£º
Article; Blom, Magnus; Norrehed, Sara; Andersson, Claes-Henrik; Huang, Hao; Light, Mark E.; Bergquist, Jonas; Grennberg, Helena; Gogoll, Adolf; Molecules; vol. 21; 1; (2016);,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Share a compound : 6046-93-1

With the rapid development of chemical substances, we look forward to future research findings about Copper(II) acetate hydrate

Copper(II) acetate hydrate, cas is 6046-93-1, it is a common heterocyclic compound, the copper-catalyst compound, its synthesis route is as follows.

General procedure: In a 250mL distillation flask, 5,10,15,20-tetraphenylporphyrin (H2TPP) (0.50g, 0.81mmol) and NaOAc (0.30g, 3.6mmol) was stirred in 75mL of chlorobenzene and 50mL of DMF. After the addition of two equivalents of metal acetate, a Soxhlet extractor with a cellulose filter thimble filled with ?3g of K2CO3 was attached to the distillation flask. The assembly was completed with a condenser on the top of the extractor; and then the mixture was heated to reflux at 150C overnight. The reaction extent was monitored by TLC or UV-Vis until all the H2TPP was consumed. After the reaction was compete, the solvent was removed under vacuum. The remaining solid was dissolved in 150mL of chloroform, and washed with water (50mL¡Á3). The organic layer was further washed with a saturated sodium bicarbonate solution (50mL¡Á3), and then dried over K2SO4. After removal of the solvent in vacuo, the solid was recrystallized from chloroform/heptane.

With the rapid development of chemical substances, we look forward to future research findings about Copper(II) acetate hydrate

Reference£º
Article; Yao, Shu A.; Hansen, Christopher B.; Berry, John F.; Polyhedron; vol. 58; (2013); p. 2 – 6;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Brief introduction of 14172-91-9

14172-91-9 5,10,15,20-Tetraphenyl-21H,23H-porphine copper(II) 3722750, acopper-catalyst compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.14172-91-9,5,10,15,20-Tetraphenyl-21H,23H-porphine copper(II),as a common compound, the synthetic route is as follows.

To a stirred solution of (meso-tetraphenylporphyrinato)copper(II) (1c; 237 mg, 0.35 mmol) inCHCl3 (530 mL) at room temperature, a solution of 25% aqueous nitric acid (freshly prepared fromfuming yellow HNO3, d = 1.52; large excess, 140 mL, 637 mmol) was added dropwise during ca5 min. The reaction mixture was intensively stirred under argon in a round-bottomed ask, protectedagainst light, for 30-40 min with TLC monitoring (CHCl3/n-hexane-1:1). Then, the mixture waspoured into aqueous solution of 5% NaHCO3 (200 mL), and shaken carefully in a separatory funnel.The separated organic layer was washed with water (4 200 mL), and dried with anhydrousMgSO4/Na2CO3. After evaporating the solvent, the residue was subjected to column chromatography(eluent: CHCl3/n-hexane1:1) to give (2-nitro-5,10,15,20-tetraphenylporphyrinato)copper(II) (2c; 71 mg, 28%) and a mixture of dinitro-substituted isomers (150 mg, 56%). Thedinitro-isomers were separated on preparative TLC (CHCl3/n-hexane-1:1, four times developed),allowing isolation of: (a) (2,7-dinitro-5,10,15,20-tetraphenylporphyrinato)copper(II) (3ca; 40 mg,15%); (b) (3,7-dinitro-5,10,15,20-tetraphenylporphyrinato)copper(II) (3cb; 35.5 mg, 13%); (c)(2,8-dinitro-5,10,15,20-tetra-phenylporphyrinato)copper(II) (3cc) contaminated with small amountsof (3,7-dinitro-5,10,15,20-tetraphenylporphyrinato)copper(II) (3cb) (30 mg, yield-ca 10%). 3cc can befurther purified by preparative TLC.

14172-91-9 5,10,15,20-Tetraphenyl-21H,23H-porphine copper(II) 3722750, acopper-catalyst compound, is more and more widely used in various.

Reference£º
Article; Mikus, Agnieszka; Rosa, Mariusz; Ostrowski, Stanis?aw; Molecules; vol. 24; 5; (2019);,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”