Some tips on 7787-70-4

As the paragraph descriping shows that 7787-70-4 is playing an increasingly important role.

7787-70-4, Copper(I) bromide is a copper-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Triethyl phosphite (183g, 1.1 mol) was added to a suspension of copper(I) bromide (164.5 g, 1.15 mol) in toluene (500 ml). The mixture was heated at 80C for 3 h with stirring, then left to cool and settle. The clear solution was decanted from the solid residue and the solvent evaporated on a rotary evaporator at 60C, to provide copper(I) bromide triethyl phosphite complex as a clear colourless oil, 336g (94% crude yield).

As the paragraph descriping shows that 7787-70-4 is playing an increasingly important role.

Reference£º
Patent; ASTRAZENECA AB; ASTRAZENECA UK LIMITED; WO2006/67416; (2006); A1;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Some tips on 6046-93-1

As the paragraph descriping shows that 6046-93-1 is playing an increasingly important role.

6046-93-1, Copper(II) acetate hydrate is a copper-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: A solution of Cu(OAc)2¡¤H2O (4.6 mmol) in methanol (10 mL) was added to a solution of corresponding porphyrin (1.15 mmol) in methylene chloride (50 mL). The resulting mixture was stirred flor 1.5 h at room temperature with TLC monitoring (CHCl3-hexane 1:2). Then the reaction mixture was poured into water and extracted with methylene chloride. The organic layer was dried over Na2SO4, and the solvent was removed under reduced pressure. The residue was used without purification. 5,10,15,20-(tetraphenylporphyrinato)copper(II) (13) [56] (757 mg,yield 97%). UV-Vis (CH2Cl2) >max, (j10-3) nm: 414 (611), 539 (29).APCI-MS Found: [M]+ 676.16; ?C44H28CuN4? requires [M]+ 676.26.

As the paragraph descriping shows that 6046-93-1 is playing an increasingly important role.

Reference£º
Article; Ol’shevskaya, Valentina A.; Alpatova, Viktoriya M.; Radchenko, Alexandra S.; Ramonova, Alla A.; Petrova, Albina S.; Tatarskiy, Victor V.; Zaitsev, Andrei V.; Kononova, Elena G.; Ikonnikov, Nikolay S.; Kostyukov, Alexey A.; Egorov, Anton E.; Moisenovich, Mikhail M.; Kuzmin, Vladimir A.; Bragina, Natalya A.; Shtil, Alexander A.; Dyes and Pigments; vol. 171; (2019);,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Some tips on 7787-70-4

As the paragraph descriping shows that 7787-70-4 is playing an increasingly important role.

7787-70-4, Copper(I) bromide is a copper-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: The complexes were prepared according to the following method [14]: 1mmol of copper(I) bromide or copper(I) chloride is stirred in methanol until complete dissolution. Then, 2.1 mmol of the corresponding phosphine ligand was added. The mixture was stirred at 60C for 30min. under nitrogen atmosphere. A microcrystalline precipitate was obtained by concentration of the solution at reduced pressure. The solid product was dissolved in a dichloromethane/methanol mixture and the solution was gradually cooled to 4C to give an air stable and colorless crystalline solid suitable for X-ray single-crystal diffraction studies.

As the paragraph descriping shows that 7787-70-4 is playing an increasingly important role.

Reference£º
Article; Espinoza, Sully; Arce, Pablo; San-Martn, Enrique; Lemus, Luis; Costamagna, Juan; Faras, Liliana; Rossi, Miriam; Caruso, Francesco; Guerrero, Juan; Polyhedron; vol. 85; (2015); p. 405 – 411;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Downstream synthetic route of 34946-82-2

The synthetic route of 34946-82-2 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.34946-82-2,Copper(II) trifluoromethanesulfonate,as a common compound, the synthetic route is as follows.

Tert-leucine phosphinoazomethinylate potassium salt (100 mg, 0.23 mmol, 1 eq.) and copper bis-triflate Cu(OTf)2 (114 mg, 0.23 mmol, 1 eq.) are placed in a round-bottom flask. Anhydrous THF is then added (9 mL, 40 mL per mmol). The reaction mixture is agitated at room temperature for 1 hour. The solvent is evaporated and the product is dried under reduced pressure. A green powder is obtained (210 mg, 98%).

The synthetic route of 34946-82-2 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Mauduit, Marc; Rix, Diane; Crevisy, Christophe; Wencel, Joanna; US2010/267956; (2010); A1;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Simple exploration of 7787-70-4

As the paragraph descriping shows that 7787-70-4 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.7787-70-4,Copper(I) bromide,as a common compound, the synthetic route is as follows.

General procedure: HLBAP (0.525 g, 1 mmol) and triethylamine (0.28 mL, 2 mmol) were dissolved in a 2:1 acetonitrile/dichloromethane mixture (45 ml), and then copper salt with the corresponding anion (1 mmol) was added. The reaction mixture was stirred for 4 h at room temperature in the presence of air. X-ray quality red brown crystals were grown from a 1:1 solvent mixtureof dichloromethane/methanol.

As the paragraph descriping shows that 7787-70-4 is playing an increasingly important role.

Reference£º
Article; Safaei, Elham; Bahrami, Hadiseh; Wojtczak, Andrzej; Alavi, Saman; Jagli?i?, Zvonko; Polyhedron; vol. 122; (2017); p. 219 – 227;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

Simple exploration of 7758-99-8

As the paragraph descriping shows that 7758-99-8 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.7758-99-8,Copper(II) sulfate pentahydrate,as a common compound, the synthetic route is as follows.

18 g of copper sulphate and 6.75 g of sodium bromide were added to 150 ML of D. M water in a 3 necked round bottom flask. The contents of flask were heated to 76-78 C to obtain a clear solution. 6g of sodium metabisulphite was then added to it in portions and stirred for 15 min. The reaction mixture was cooled to 30 2 C. CuBr solid was filtered. To 150 g of compound of formula 2 was added 1.5 1 of acetone and 600 ml of methanol. The contents of the flask were cooled to 18-20 C. 245 ml of aqueous HBR was added to the above reaction mixture at 18-20 C in a single charge. Cool the contents of the flask to 0-2 C. 120ML of 50% w/v aqueous sodium nitrite solution was added slowly to the reaction mixture by maintaining the temperature between 0-2 C, over a period of 30 minutes. The reaction mixture was maintained for 15 minutes at 0-2 C. The temperature was raised to 20-22 C. A solution of 246g of acrylamide in 900ML of acetone was added at 22-23 C in single charge. The reaction mixture was stirred for 10 minutes at 23-24 C, 4. 6g of cuprous bromide was added in a single charge under vigorous stirring and the reaction mixture maintained for 2 hours at 30-35 C. After completion of the reaction, acetone and methanol were. distilled off completely to obtain thick liquid mass. A solution of 150 g of sodium bicarbonate in 3.0 1 of D. M water was prepared. 600ML of hexane was added to it and stirred to get a clear biphasic solution. The reaction mixture was gradually quenched into above flask containing aqueous sodium bicarbonate and hexane solution over a period of 30 minutes at 23-35 C followed by stirring for 2 hours. The product was filtered and the product cake washed with D. M. Water followed by hexane and dried. The crude product obtained was suspended in water and stirred for 1 hour at 25-30 C. The product was filtered and cake washed with D. M. Water followed by hexane. The product thus obtained was suspended in hexane and stirred for 2 hours at 35- 40C. It was filtered and washed with hexane and dried to get compound of formula 3.

As the paragraph descriping shows that 7758-99-8 is playing an increasingly important role.

Reference£º
Patent; SUN PHARMACEUTICAL INDUSTRIES LIMITED; WO2004/108721; (2004); A1;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

Brief introduction of 34946-82-2

34946-82-2 Copper(II) trifluoromethanesulfonate 2734996, acopper-catalyst compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.34946-82-2,Copper(II) trifluoromethanesulfonate,as a common compound, the synthetic route is as follows.

L (0.0424 g, 0.2 mmol), Cu (CF3SO3)2(0.0691g,0.2mmol)H2O (6 mL), CH3CN (4 mL), water and heat 100Oslow C down to room temperature after three days.After opening the autoclave there for X- ray diffraction analysis of the yellow rod-like crystals.Yield: 35%

34946-82-2 Copper(II) trifluoromethanesulfonate 2734996, acopper-catalyst compound, is more and more widely used in various.

Reference£º
Patent; Tianjin Normal University; Wang, Ying; (10 pag.)CN104557986; (2016); B;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

Analyzing the synthesis route of 578743-87-0

578743-87-0 [1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride 0, acopper-catalyst compound, is more and more widely used in various.

578743-87-0, [1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride is a copper-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

In a dry double-mouth bottle to place Pt – 2 (0.0594 g, 0.1 mmol), CuClNHC (0.0488 g, 0.1 mmol), vacuum pumping and nitrogen cycle three times, then the nitrogen flow by adding 10 ml ethanol, stirring reflux reaction for 4 hours, cooling to room temperature, then added potassium hexafluorophosphate (0.184 g, 1 mmol), stirring at the room temperature reaction 2 hours, filtered, concentrated filtrate, ethanol: dichloromethane=1:10 column, get the orange solid 0.047 g, and the yield is 40%.

578743-87-0 [1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride 0, acopper-catalyst compound, is more and more widely used in various.

Reference£º
Patent; Jiangsu University Of Science And Technology; Shi Chao; Li Qiuxia; Zhang Xinghua; (24 pag.)CN108690096; (2018); A;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

Brief introduction of 7787-70-4

7787-70-4 Copper(I) bromide 24593, acopper-catalyst compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.7787-70-4,Copper(I) bromide,as a common compound, the synthetic route is as follows.

General procedure: 0.018g (0.182mmol) of CuCl was added to 0.340g (0.205mmol) of [PPh4]2[1] dissolved in 20mL of MeCN solution. After stirring the resultant solution for 1hat RT, the yellowish brown solution formed, which was filtered, and solvent was removed in vacuo. The precipitate was washed with Et2O and extracted with THF, then recrystallized with Et2O/MeOH/THF to give [PPh4]2[2a] (0.250g, 0.143mmol, 79% based on CuCl). Similarly, under the same reaction conditions, using CuBr and CuI, we have isolated a yellowish brown solid of [PPh4]2[2b] (96% based on CuBr) and [PPh4]2[2c] (71% based on CuI), respectively, upon crystallization from Et2O/THF.

7787-70-4 Copper(I) bromide 24593, acopper-catalyst compound, is more and more widely used in various.

Reference£º
Article; Shieh, Minghuey; Miu, Chia-Yeh; Liu, Yu-Hsin; Chu, Yen-Yi; Hsing, Kai-Jieah; Chiu, Jung-I; Lee, Chung-Feng; Journal of Organometallic Chemistry; vol. 815-816; (2016); p. 74 – 83;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

Simple exploration of 13395-16-9

As the paragraph descriping shows that 13395-16-9 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.13395-16-9,Bis(acetylacetone)copper,as a common compound, the synthetic route is as follows.

General procedure: The monodisperse CuPd alloy NPs with composition controlwere synthesized by using a modified version of our estab-lished recipe for the CoPd alloy NPs [14]. In a typical synthesis of Cu75Pd25NPs, copper(II) acetylacetonate (0.35 mmol, 90 mg)and palladium(II) acetylacetonate (0.1 mmol, 31 mg) were dis-solved in 3 mL of OAm in a 10 mL of glass vial. In a four-necked glass reactor that allows to study under inert atmosphere,200 mg of MB was dissolved in 3 mL of OAm and 7 mL of 1-octadecene at 80C under magnetic stirring. Next, the metal precursor mixture was quickly injected into the reactor under argon environment. The reaction was then proceed for 1 h before cooled down to room temperature. Then, the colloidal NPs mixture was transferred into two separate centrifuge tubeand acetone/ethanol (v/v = 7/3) was added into the tubes. TheNP product was separated by centrifugation at 8500 rpm for10 min.

As the paragraph descriping shows that 13395-16-9 is playing an increasingly important role.

Reference£º
Article; Guengoermez, Kuebra; Metin, Oender; Applied Catalysis A: General; vol. 494; (2015); p. 22 – 28;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”