The important role of 578743-87-0

The synthetic route of 578743-87-0 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.578743-87-0,[1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride,as a common compound, the synthetic route is as follows.

In a dry double-mouth bottle to place Ir – 3 (0.0796 g, 0.1 mmol), CuClNHC (0.0488 g, 0.1 mmol), vacuum pumping and nitrogen cycle three times, then the nitrogen flow by adding 10 ml ethanol, stirring reflux reaction for 4 hours, cooling to room temperature, then added potassium hexafluorophosphate (0.184 g, 1 mmol), stirring at the room temperature reaction 2 hours, filtered, concentrated filtrate, ethanol: dichloromethane=1:10 column, get the orange solid 0.069 g, and the yield is 50%.

The synthetic route of 578743-87-0 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Jiangsu University Of Science And Technology; Shi Chao; Li Qiuxia; Zhang Xinghua; (24 pag.)CN108690096; (2018); A;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

Analyzing the synthesis route of 34946-82-2

34946-82-2 Copper(II) trifluoromethanesulfonate 2734996, acopper-catalyst compound, is more and more widely used in various.

34946-82-2, Copper(II) trifluoromethanesulfonate is a copper-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Copper(II) trifluoromethanesulfonate (5 g, 14 mmol) was dissolved in methanol (25 mL). Pyridine(12 mL, 149 mmol) was added dropwise (exothermic reaction was observed) and the reaction mixturewas stirred for 30 min. The mixture was left at ambient temperature for 1 h and thereafter in fridge (at5 C) overnight. The blue crystalline precipitate was filtered off, recrystallized from 20% Py in MeOHand dried under a stream of air affording the desired product [56]. Yield 8.5 g, 91%Appearance blue solidMolecular formula C22H20CuF6N4O6S2Molar mass 678.08042Anal.Calcd for C22H20CuF6N4O6S2: C, 38.97; H, 2.97; N, 8.26. Found: C,39.1 < 0.1; H, 3.16 0.09; N, 8.33 0.01. 34946-82-2 Copper(II) trifluoromethanesulfonate 2734996, acopper-catalyst compound, is more and more widely used in various. Reference£º
Article; Zarrad, Fadi; Zlatopolskiy, Boris D.; Krapf, Philipp; Zischler, Johannes; Neumaier, Bernd; Molecules; vol. 22; 12; (2017);,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

Brief introduction of 7787-70-4

7787-70-4 Copper(I) bromide 24593, acopper-catalyst compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.7787-70-4,Copper(I) bromide,as a common compound, the synthetic route is as follows.

Direct route A round-bottomed flask equipped with a stirring bar was charged with the ligand, SSBn (0.1503g; 0.383mmol) and acetonitrile (10mL) to give a white milky suspension. Anhydrous CuBr (0.0555g, 0.38mmol) was added in one portion under vigourous stirring to give a white suspension which became briefly transparent after a few minutes. The mixture was stirred overnight to give an off-white precipitate; it was sonicated for a few seconds and further stirred for 30min. Diethyl ether (10mL) was added and stirring was continued for 5min to give the product as a white powder which was filtered, washed with diethyl ether (5mL) and dried in air (0.1802g, 0.334mmol, 88%).Sulfur insertion route [CuBr(CSBn)]2 (103mg, 0.102mmol) was partially dissolved in acetonitrile (20mL) in a Schlenk flask. To this was added an excess of sulfur (66mg, 2mmol per sulfur). The mixture was stirred at 70C for 5h after which time the mixture was diluted with 10mL of acetonitrile and filtered. The residue was extracted with acetonitrile (2¡Á10mL). The solvent of the combined organic phases was removed by oil pump vacuum and the off-white solid dried under reduced pressure. Yield=72.6mg (0.135mmol, 66%). 1H NMR (300MHz, DMSO-d6): delta=5.22 (s, 4H, PhCH2), 6.66 (s, 2H, NCH2N), 7.32 (s, 10H, 2¡Á C6H5), 7.50 (overlapping signal, 2H, CH=CH), 7.70 (overlapping signal, 2H, CH=CH). 13C{1H} NMR (DMSO-d6, 100MHz) delta 50.3 (CH2Ph), 56.2 (NCH2N), 118.9 (CHCH), 119.2 (CHCH), 127.9 (overlapping, m/p-C6H5), 128.6 (o-C6H5), 135.9 (i-C6H5), 159.4 (C=S). IR (cm-1): 3390.3, 3092.1, 1569.7, 1495.9, 1451.8, 1408.1, 1231.2, 1190.4, 959.6, 704.5, 671.6. MS (ESI+), m/z 991 [Cu2(SSBn)2Br]+, 847 [Cu(SSBn)2]+, 455. [Cu(SSBn)]+. Elemental analysis: Calc. for C21H20BrCuN4S2: C: 47.06; H: 3.76; N: 10.45. Found: C: 46.96; H: 3.81; N: 10.40.

7787-70-4 Copper(I) bromide 24593, acopper-catalyst compound, is more and more widely used in various.

Reference£º
Article; Slivarichova, Miriam; Correa ?da Costa, Rosenildo; Nunn, Joshua; Ahmad, Ruua; Haddow, Mairi F.; Sparkes, Hazel A.; Gray, Thomas; Owen, Gareth R.; Journal of Organometallic Chemistry; vol. 847; (2017); p. 224 – 233;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

New learning discoveries about 14172-91-9

The synthetic route of 14172-91-9 has been constantly updated, and we look forward to future research findings.

14172-91-9, 5,10,15,20-Tetraphenyl-21H,23H-porphine copper(II) is a copper-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: Under the protection of nitrogen, 0.14 mmol of the corresponding 5,10,15,20-tetrakis(4-R-phenyl)porphyrin copper(II)complex was dissolved in 16 ml of CHCl3, to which 0.75 ml of DMFwas added with magnetic stirring. The solution was cooled to 0 Cin an ice bath, and then 0.56 ml of phosphoryl chloride (POCl3) wasslowly added within 20 min. The ice bath was removed and stirringwas continued at room temperature for 1 h, and the solution wascontinuously stirred and heated at 70 C for 24 h. Then 3.606 g ofNaAc and 14.4 ml of distilled water were added in an ice bath andstirring for another 1 h. After separation of the aqueous layer, theorganic layer was washed with 10 ml of distilled water for 3 times,then dried over anhydrous magnesium sulfate and filtered. Thesolvent was removed by rotary evaporation at low temperature toafford a crude product. The crude product was dissolved indichloromethane and subjected to column chromatography overneutral alumina with dichloromethane/petroleum ether (v/v 3:1)as the eluent. The third coloured bandwas collected and the solventwas removed by rotary evaporation to afford a purple powder.

The synthetic route of 14172-91-9 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Wu, Zhen-Yi; Yang, Sheng-Yan; Journal of Molecular Structure; vol. 1188; (2019); p. 244 – 254;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”