Discover the magic of the 1111-67-7

Sometimes chemists are able to propose two or more mechanisms that are consistent with the available data. Application of 1111-67-7, If a proposed mechanism predicts the wrong experimental rate law, however, the mechanism must be incorrect.Welcome to check out more blogs about 1111-67-7, in my other articles.

As a society publisher, everything we do is to support the scientific community – so you can trust us to always act in your best interests, and get your work the international recognition that it deserves. Application of 1111-67-7, Name is Cuprous thiocyanate, Application of 1111-67-7, molecular formula is CCuNS. In a article,once mentioned of Application of 1111-67-7

We report on a low-Temperature solution processed trifunctional inorganic p-Type semiconductor, copper(I) thiocyanate (CuSCN), as a hole injection/transporting and electron-blocking layer for high-efficiency organic light-emitting diodes (OLEDs). The electroluminescence (EL) characteristics of CuSCN and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) based devices were studied with the structure of 4,4?-bis(N-carbazolyl)-1,1?-biphenyl as the host, bis[2-(2-pyridinyl-N)phenyl-C](acetylacetonato)iridium(III) [(ppy)2Ir(acac)] as the green emitter, 2,2?,2?-(1,3,5-benzinetriyl)-Tris(1-phenyl-1H-benzimidazole) as the electron transporting layer, and lithium fluoride/aluminum as the cathode electrode. The power efficacies for the CuSCN based devices are found to be 51.7 and 40.3 lm/W at 100 and 1000 cd/m2, respectively, which are 13 and 60% higher than the PEDOT:PSS based counterparts. These are the highest power efficacies ever reported for this particular device architecture. The superior EL characteristics may be explained by its unique electronic properties. We believe that the high lowest unoccupied molecular orbital (a’1.8 eV) and deep highest occupied molecular orbital (a’5.5 eV) of CuSCN assist to confine the electron injected into the emission layer and facilitate the injection of hole, likewise enhancing recombination. The present study will serve to enable highly efficient white OLEDs for general lighting purposes.

Sometimes chemists are able to propose two or more mechanisms that are consistent with the available data. Application of 1111-67-7, If a proposed mechanism predicts the wrong experimental rate law, however, the mechanism must be incorrect.Welcome to check out more blogs about 1111-67-7, in my other articles.

Reference:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”