Chemical research careers are more diverse than they might first appear, as there are many different reasons to conduct research and many possible environments. Recommanded Product: 1111-67-7. Introducing a new discovery about 1111-67-7, Name is Cuprous thiocyanate, The appropriate choice of redox mediator can avoid electrode passivation and overpotential, which strongly inhibit the efficient activation of substrates in electrolysis.
Two novel cation-induced complexes, {(Phen-dq) [Cu2(SCN) 4]}n (1) and {(Phen-dzp) [Cu2(SCN) 4]}n (2) [Phen-dq = (C14H12N 2)2+, 5,6-dihydropyrazino[1, 2, 3, 4-lmn]-1, 10-phenanthrolinium, Phen-dzp = (C15H14N2) 2+, 6,7-dihydro-5H-[1, 4]diazepino[1, 2, 3, 4-lmn][1,10] phenanthroline-4, 8-diium], have been synthesized via the self-assembly reaction in solution. The compound 1 possesses a two-dimensional supramolecular network linked by bridging thiocyanate groups. Complex 2 is also a two-dimensional polymeric architecture with the organic cation Phen-dzp trapped in it. Each Cu(I) atom is coordinated by two N atoms and two S atoms from four NCS groups to form a Cu2(NCS)2 rectangular dimer unit. In these two compounds, thanks to the difference from organic cations, the simple modification from Phen-dq to Phen-dzp leads to distinct structures between 1 and 2, and these “planar” cations are effective guests to manipulate the aggregate structure of thiocyanatocuprates.
The catalyzed pathway has a lower Ea, but the net change in energy that results from the reaction is not affected by the presence of a catalyst. In my other articles, you can also check out more blogs about 1111-67-7
Reference:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”