Discovery of 13395-16-9

A reaction mechanism is the microscopic path by which reactants are transformed into products. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 13395-16-9

While the job of a research scientist varies, most chemistry careers in research are based in laboratories, where research is conducted by teams following scientific methods and standards. 13395-16-9, Name is Bis(acetylacetone)copper, belongs to copper-catalyst compound, is a common compound. Related Products of 13395-16-9In an article, once mentioned the new application about 13395-16-9.

The kinetics and mechanism of copper film growth from the reactions of bis(acetylacetonato)copper(II), bis(hexafluoroacetylacetonato)copper(II), and (vinyltrimethylsilane)(hexafluoroacetylacetonato)copper(I) (Cu(hfac)(vtms)) with copper single crystal surfaces were investigated. Experiments were performed using vibrational spectroscopy (reflection infrared and high-resolution electron energy loss spectroscopies) as well as mass spectrometry (temperature-programmed desorption and integrated desorption mass spectrometries). Both ligand desorption and dissociation were observed upon pyrolysis of these molecules under ultra-high-vacuum conditions. We demonstrate that adsorbed beta-diketonate ligands decompose in a stepwise fashion at temperatures above ?375 K to yield adsorbed CF3 and ketenylidene (?C-C?O) intermediates. These further decompose above ?500 K to leave surface carbon, a major contaminant in copper films grown from CuII beta-diketonates. Clean films can be grown from the pyrolysis of Cu(hfac)(vtms) at pressures above 10-5 Torr, however. The implications of our results relative to the mechanism of copper film growth at elevated pressures are also discussed.

A reaction mechanism is the microscopic path by which reactants are transformed into products. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 13395-16-9

Reference:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”