Discovery of 14898-67-0

In some applications, this compound(14898-67-0)Reference of Ruthenium(III) chloride xhydrate is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Reference of Ruthenium(III) chloride xhydrate. Aromatic heterocyclic compounds can also be classified according to the number of heteroatoms contained in the heterocycle: single heteroatom, two heteroatoms, three heteroatoms and four heteroatoms. Compound: Ruthenium(III) chloride xhydrate, is researched, Molecular Cl3H2ORu, CAS is 14898-67-0, about Nitrogen-Doped Reduced Graphene Oxide Supported Pd4.7Ru Nanoparticles Electrocatalyst for Oxygen Reduction Reaction. Author is Park, Gil-Ryeong; Jo, Seung Geun; Varyambath, Anuraj; Kim, Jeonghyun; Lee, Jung Woo.

It is imperative to design an inexpensive, active, and durable electrocatalyst in oxygen reduction reaction (ORR) to replace carbon black supported Pt (Pt/CB). In this work, we synthesized Pd4.7Ru nanoparticles on nitrogen-doped reduced graphene oxide (Pd4.7Ru NPs/NrGO) by a facile microwave-assisted method. Nitrogen atoms were introduced into the graphene by thermal reduction with NH3 gas and several nitrogen atoms, such as pyrrolic, graphitic, and pyridinic N, found by XPS. Pyridinic nitrogen atoms acted as efficient particle anchoring sites, making strong bonding with Pd4.7Ru NPs. Addnl., carbon atoms bonding with pyridinic N facilitated the adsorption of O2 as Lewis bases. The uniformly distributed ∼2.4 nm of Pd4.7Ru NPs on the NrGO was confirmed by transmission electron microscopy. The optimal composition between Pd and Ru is 4.7:1, reaching -6.33 mA/cm2 at 0.3 VRHE for the best ORR activity among all measured catalysts. Furthermore, accelerated degradation test by electrochem. measurements proved its high durability, maintaining its initial c.d. up to 98.3% at 0.3 VRHE and 93.7% at 0.75 VRHE, whereas other catalysts remained below 90% at all potentials. These outcomes are considered that the doped nitrogen atoms bond with the NPs stably, and their electron-rich states facilitate the interaction with the reactants on the surface. In conclusion, the catalyst can be applied to the fuel cell system, overcoming the high cost, activity, and durability issues.

In some applications, this compound(14898-67-0)Reference of Ruthenium(III) chloride xhydrate is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Reference:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”