Pyun, Do Hyeon; Kim, Tae Jin; Kim, Myeong Jun; Hong, Soon Auck; Abd El-Aty, A. M.; Jeong, Ji Hoon; Jung, Tae Woo published an article about the compound: 4-Hydroxyquinoline-2-carboxylic Acid( cas:492-27-3,SMILESS:O=C(C1=NC2=CC=CC=C2C(O)=C1)O ).Quality Control of 4-Hydroxyquinoline-2-carboxylic Acid. Aromatic heterocyclic compounds can be classified according to the number of heteroatoms or the size of the ring. The authors also want to convey more information about this compound (cas:492-27-3) through the article.
Endoplasmic reticulum (ER) stress plays a causative role in the development of nonalcoholic fatty liver disease (NAFLD). Kynurenic acid (KA) is a tryptophan metabolite that has been shown to exert anti-inflammatory effects in macrophages and endothelial cells. However, the role of KA in ER stress-associated development of NAFLD has not been fully explored. In the current study, we observed decreased KA levels in the serum of obese subjects. Treated hepatocytes with KA attenuated palmitate-induced lipid accumulation and downregulated lipogenesis-associated genes as well as ER stress markers in a dose-dependent manner. Furthermore, KA augmented AMP-activated protein kinase (AMPK) phosphorylation, oxygen-regulated protein 150 (ORP150) expression, and autophagy markers. The small interfering RNA-mediated suppression of AMPK and ORP150, or 3-methyladenine also abrogated the effects of KA on ER stress and lipid accumulation in hepatocytes. In accordance with in vitro observations, KA administration to mice fed a high-fat diet ameliorated hepatic lipid accumulation and decreased the expression of lipogenic genes as well as ER stress. Moreover, KA treatment increased hepatic AMPK phosphorylation, ORP150 expression, and autophagy related markers in mouse livers. Knockdown of AMPK using in vivo transfection mitigated the effects of KA on hepatic steatosis and ER stress as well as autophagy and ORP150 expression. These results suggest that KA ameliorates hepatic steatosis via the AMPK/autophagy- and AMPK/ORP150-mediated suppression of ER stress. In sum, KA might be used as a promising therapeutic agent for treatment of NAFLD.
Different reactions of this compound(4-Hydroxyquinoline-2-carboxylic Acid)Quality Control of 4-Hydroxyquinoline-2-carboxylic Acid require different conditions, so the reaction conditions are very important.
Reference:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”