Synthetic Route of 13395-16-9, Because a catalyst decreases the height of the energy barrier, its presence increases the reaction rates of both the forward and the reverse reactions by the same amount.13395-16-9, Name is Bis(acetylacetone)copper, molecular formula is C10H16CuO4. In a article£¬once mentioned of 13395-16-9
Copper(II) complex with acetylacetone phenylhydrazone: Synthesis, crystal structure, and thermal stability
The Cu(phac)2 complex was synthesized by the reaction of copper(II) acetate with acetylacetone phenylhydrazone (Hphac), and its crystal structure was established by X-ray diffraction: space group P21/c, a = 11.173(3) A, b = 8.267(2) A, c = 12.633(4) A, beta = 115.01(3), V = 1057.5(5) A3, Z = 4, R1 = 0.0476. The crystal structure of Cu(phac)2 consists of the centrosymmetrical mononuclear molecules. The central copper(II) ion is coordinated by two oxygen atoms and two nitrogen atoms of two acetylacetone phenylhydrazone ligands. The Cu(phac)2 molecules are linked in layers parallel to the Oyz plane. The oxygen atoms of the ketone fragment are involved in intermolecular bonding, which completes the coordination sphere of the central copper(II) ion to a substantially elongated octahedron. The thermal stability of the Cu(phac)2 complex was estimated under nitrogen at atmospheric pressure and in vacuo.
A reaction mechanism is the microscopic path by which reactants are transformed into products. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 13395-16-9
Reference£º
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”