Reference of 1111-67-7, The dynamic chemical diversity of the numerous elements, ions and molecules that constitute the basis of life provides wide challenges and opportunities for research. In an article, once mentioned the application of 1111-67-7, Name is Cuprous thiocyanate, is a conventional compound.
Here, we present a strategy for the realization of p-channel inorganic thin film transistors (TFTs) based on vertically stacked contacts and a copper(i) thiocyanate (CuSCN) semiconductor. The CuSCN semiconductor was generated by a simple low-temperature (ca.100 C) solution-based process. Utilizing the vertical architecture, channel length was determined by the thickness of the CuSCN film. This readily endows transistors with ultrashort channel lengths (<700 nm) to afford delivering drain current greatly exceeding that of conventional planar TFTs. Thus, high normalized transconductance of 0.84 S m?1and current density of 248 mA cm?2can be achieved for CuSCN-based vertical TFTs. To further improve the device's performance, we doped SnCl2into the semiconductor film. By doping SnCl2into CuSCN, shallow acceptor states that could induce additional holes were generated above the valence band maximum. The SnCl2-doped TFTs showed enlarged transconductance and current density values of 1.8 S m?1and 541 mA cm?2, respectively, which are comparable with those of other high performance vertical transistors. The p-channel inorganic TFTs developed in this study can open up exciting opportunities in complementary circuits, display switching, and flexible electronics. One of the oldest and most widely used commercial enzyme inhibitors is aspirin, Reference of 1111-67-7, which selectively inhibits one of the enzymes involved in the synthesis of molecules that trigger inflammation. you can also check out more blogs about 1111-67-7
Reference:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”