Discovery of Cuprous thiocyanate

Note that a catalyst decreases the activation energy for both the forward and the reverse reactions and hence accelerates both the forward and the reverse reactions.Recommanded Product: 1111-67-7, you can also check out more blogs about1111-67-7

Chemistry is an experimental science, and the best way to enjoy it and learn about it is performing experiments. Recommanded Product: 1111-67-7. Introducing a new discovery about 1111-67-7, Name is Cuprous thiocyanate

Improved CuSCN-ZnO diode performance with spray deposited CuSCN

P-type copper(I) thiocyanate (beta-CuSCN) was deposited using a pneumatic micro-spray gun from a saturated solution in propyl sulphide. An as-produced 6 mum CuSCN film exhibited a hole mobility of 70 cm 2/V¡¤s and conductivity of 0.02 S¡¤m-1. A zinc oxide (ZnO) nanorod array was filled with CuSCN, demonstrating the capability of the process for filling nanostructured materials. This produced a diode with a n-type ZnO and p-type CuSCN junction. The best performing diodes exhibited rectifications of 3550 at ¡À 3 V. The electronic characteristics exhibited by the diode were attributed to a compact grain structure of the beta-CuSCN giving increased carrier mobility and an absence of cracks preventing electrical shorts between electrode contacts that are typically associated with beta-CuSCN films.

Note that a catalyst decreases the activation energy for both the forward and the reverse reactions and hence accelerates both the forward and the reverse reactions.Recommanded Product: 1111-67-7, you can also check out more blogs about1111-67-7

Reference£º
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”