With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.7787-70-4,Copper(I) bromide,as a common compound, the synthetic route is as follows.
A yellow solution of 168.0 mg (0.736 mmol) of 2b in toluene (10 mL) was added to a green CH3CN solution (20 mL) containing 105.6 mg (0.736 mmol) CuBr with stirring at ambient temperature. The reaction mixture was allowed to stir overnight forming a dark green precipitate. The solution was filtered, and the precipitate washed with cold MeOH (5 mL) and dried under vacuum (57.9 mg, 17% yield). 1H and 13C{1H} NMR spectra could not be recorded due to strong paramagnetic properties of complex. FTIR (KBr) 3425, 3056, 3006, 2918, 1627, 1593, 1466, 1436, 1300, 1269, 1236, 1201, 1157, 1106, 1092, 1069, 1046, 967, 958, 914, 849, 774, 767, 744, 694, 652, 567, 543, 501, 458, 417 cm-1. Anal. Calc’d. for C13H12Br2CuN2S: C = 34.57%, H = 2.68%, N = 6.20%. Found: C = 34.17%, H = 3.36%, N = 6.44%. UV-vis (DMF, 0.050 mg/mL) lambdamax (epsilon) = 266 (7.6 * 103), 353.
The synthetic route of 7787-70-4 has been constantly updated, and we look forward to future research findings.
Reference£º
Article; Cross, Edward D.; Ang, M. Trisha C.; Richards, D. Douglas; Clemens, Amy C.; Muthukumar, Harshiny; McDonald, Robert; Woodfolk, London; Ckless, Karina; Bierenstiel, Matthias; Inorganica Chimica Acta; vol. 481; (2018); p. 69 – 78;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”