Dun, Menghan et al. published their research in Sensors and Actuators, B: Chemical in 2022 | CAS: 20427-59-2

Cuprichydroxide (cas: 20427-59-2) belongs to copper catalysts. The evolution of transition metal catalysts has attained a stage of civilization that authorizes for an extensive scope of chemical bonds formation partners to be combined efficiently. Copper nanoparticles can also catalyze the coupling reaction of phenols, thiols, xanthogenates, nitrogen-containing nucleophiles, selenium ruthenium nucleophiles and the like.Computed Properties of CuH2O2

Synergistic effect of PdO and parallel nanowires assembled CuO microspheres enables high performance room-temperature H2S sensor was written by Dun, Menghan;Tang, Meihui;Zhao, Danyang;Li, Xiaohui;Huang, Xintang. And the article was included in Sensors and Actuators, B: Chemical in 2022.Computed Properties of CuH2O2 This article mentions the following:

High-performance semiconductor gas sensors comprising of metal oxides have offered appealing promise to environment monitor devices but remain challenging due to their high working temperature and sluggish response/recovery speed. Here we report a simple impregnation method that utilizing the high catalytic activity of palladium oxide activates copper oxide parallel nanowires assembled hierarchical microspheres (PdO-CuO NWMs). And then gas-sensing devices with different decorating concentrations were fabricated to investigate their sensing performance on hydrogen sulfide (H2S). It was demonstrated that the CuO microspheres with 2 wt% PdO decorating concentration is the optimum, with high response of 6.8 and extremely short response/recovery time of 1.8/4.1 s towards 50 ppm H2S at 30°C, effective enhancing the response (4.9-50 ppm H2S) and working temperature (150°C) of pristine CuO NWMs sensor. The boosting sensing performance of our PdO-CuO NWMs gas sensor was attributed to the synergistic effect of high catalytic noble nanoparticles and hierarchical structures. The coupling strategy offers new insights to explore room temperature and real-time monitoring gas sensors. In the experiment, the researchers used many compounds, for example, Cuprichydroxide (cas: 20427-59-2Computed Properties of CuH2O2).

Cuprichydroxide (cas: 20427-59-2) belongs to copper catalysts. The evolution of transition metal catalysts has attained a stage of civilization that authorizes for an extensive scope of chemical bonds formation partners to be combined efficiently. Copper nanoparticles can also catalyze the coupling reaction of phenols, thiols, xanthogenates, nitrogen-containing nucleophiles, selenium ruthenium nucleophiles and the like.Computed Properties of CuH2O2

Referemce:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”