Extended knowledge of CCuNS

The catalyzed pathway has a lower Ea, but the net change in energy that results from the reaction is not affected by the presence of a catalyst. In my other articles, you can also check out more blogs about 1111-67-7

Reactions catalyzed within inorganic and organic materials and at electrochemical interfaces commonly occur at high coverage and in condensed media, causing turnover rates to depend strongly on interfacial structure and composition, Safety of Cuprous thiocyanate, Name is Cuprous thiocyanate, belongs to copper-catalyst compound, is a common compound. Safety of Cuprous thiocyanateIn an article, authors is Hou, Lei, once mentioned the new application about Safety of Cuprous thiocyanate.

Six mixed-valence CuICuII compounds containing 4?-(4-pyridyl)-2,2?:6?,2?-terpyridine (L1) or 4?-(2-pyridyl)-2,2?:6?,2?-terpyridine (L2) were prepared under the hydrothermal and ambient conditions, and their crystal structures were determined by single-crystal X-ray diffraction. Selection of CuCl 2·2H2O or Cu(CH3COO)2· H2O with the L1 ligand and NH4SCN, KI, or KBr under hydrothermal conditions afforded 1-dimensional mixed-valence Cu ICuII compounds [Cu2(L1)(mu-1,1-SCN)(mu-Cl) Cl]n (1), [Cu2(L1)(mu-l)2Cl]n (2), [Cu2(L1)(mu-Br)2Br]n (3), and [Cu 2(L1)(mu-1,3-SCN)2(SCN)]n (4), respectively. Compound 5, prepared by layering with CuSCN and L1, is a 2-dimensional bilayer structure. In compounds 1-5, the L1 ligand and X (X = Cl, Br, I, SCN) linked between monovalent and divalent copper atoms resulting in the formation of mixed-valence rectangular grid-type M4L4 or M 6L6 building blocks, which were further linked by X (X = Cl, Br, I, SCN) to form 1- or 2-dimensional polymers. The sizes of M 4L4 units in 1-4 were fine-tuned by the sizes of X linkers. Reaction of Cu(CH3COO)2·H2O with L2 and NH4SCN under hydrothermal conditions gave mixed-valence CuICuII compound [Cu2(L2)(mu-1,3-SCN) 3]n (6). Unlike those in 1-5, the structure of 6 was constructed from thiocyanate groups and the pendant pyridine of L2 left uncoordinated. The temperature-dependent magnetic susceptibility studies on compounds 1 and 4 showed the presence of mixed-valence electronic structure.

The catalyzed pathway has a lower Ea, but the net change in energy that results from the reaction is not affected by the presence of a catalyst. In my other articles, you can also check out more blogs about 1111-67-7

Reference:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”