Children learn through play, and they learn more than adults might expect. Science experiments are a great way to spark their curiosity, get their minds active, and encourage them to do something that doesn’t involve a screen. Cuprous thiocyanate,introducing its new discovery. Application In Synthesis of Cuprous thiocyanate
Copper(I) pseudohalide coordination polymers containing macrocyclic methylcycloarsoxane (CH3AsO)n (n = 4, 5) or 1,7-dithia-18-crown-6 bridging units
Treatment of an acetonitrile solution of CuCN with methylcycloarsoxane (CH3AsO)n at 110C affords the coordination polymer ?3[CuCN{cyclo-(CH3AsO)4}] (1), in which infinite CuCN zigzag chains are linked by mu-As1,As 3 cyclotetramers (CH3AsO)4 into an open 3-D framework. Under similar solvothermal conditions, reaction of CuSCN with (CH3AsO)n in the presence of KSCN leads to metal-mediated ring expansion of the cycloarsoxane to yield the complex ? 1[{K[cyclo-(CH3AsO)5]2}Cu(NCS) 2] (2). This contains discrete [Cu(NCS-kappaN)2{cyclo- (CH3AsO)5kappaAs}2]- anions that bridge kappa10O coordinated potassium cations into infinite chains. In contrast, the structure directing role of the [K(1,7DT18C6) 2]+ sandwich building units for the solvothermal product ?3[{K(1,7DT18C6)2}Cu6(CN) 7] (3) (1,7DT18C6 = 1,7-dithia-18-crown-6) leads to formation of an open ?3[{Cu6(CN)7} -] framework. Individual [K(1,7DT18C6)2]+ moieties bridge Cu Atoms in a mu-S1,S7 mode and are encapsulated within the large [Cu26(CN)28]2- cages of the cyanocuprate(I) network.
If you are interested in 1111-67-7, you can contact me at any time and look forward to more communication. Application In Synthesis of Cuprous thiocyanate
Reference:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”