Extracurricular laboratory:new discovery of C10H16CuO4

Enzymes are biological catalysts that produce large increases in reaction rates and tend to be specific for certain reactants and products. I hope my blog about 13395-16-9 is helpful to your research.

Redox catalysis has been broadly utilized in electrochemical synthesis due to its kinetic advantages over direct electrolysis. Recommanded Product: Bis(acetylacetone)copper. Introducing a new discovery about 13395-16-9, Name is Bis(acetylacetone)copper, The appropriate choice of redox mediator can avoid electrode passivation and overpotential, which strongly inhibit the efficient activation of substrates in electrolysis.

Stereocontrol in a ytterbium triflate-catalyzed 1,3-dipolar cyclo-addition reaction of carbonyl ylide with N-substituted maleimides and dimethyl fumarate

The addition of Yb(OTf)3 (10 mol%) in a Rh2(OAc)4-catalyzed reaction of o-(methoxycarbonyl)-alpha-diazoacetophe-none with N-methylmaleimide in CH2Cl2 or in diethyl ether gave cycloadducts with high endo-selectivity (endo:exo = 95:5-96:4). The CuOTf (20 mol%)-or CuCl-Yb(OTf)3 (5 mol%)-catalyzed reaction also gave 1,3-dipolar cycloadducts in an endo-selective manner (endo:exo = 94:6). On the other hand, a reaction using only Rh2(OAc)4 (5 mol%) as the catalyst in benzene under reflux gave cycloadducts with exo-selectivity (endo:exo = 11:89). The reaction of N-ethyland N-phenylmaleimides under the same conditions showed a similar tendency in terms of the stereoselectivity.

Enzymes are biological catalysts that produce large increases in reaction rates and tend to be specific for certain reactants and products. I hope my blog about 13395-16-9 is helpful to your research.

Reference:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”