Extracurricular laboratory:new discovery of Cuprous thiocyanate

We¡¯ll also look at important developments in the pharmaceutical industry because understanding organic chemistry is important in understanding health, medicine, the role of 1111-67-7, and how the biochemistry of the body works.Electric Literature of 1111-67-7

Electric Literature of 1111-67-7, The reaction rate of a catalyzed reaction is faster than the reaction rate of the uncatalyzed reaction at the same temperature.1111-67-7, Name is Cuprous thiocyanate, molecular formula is CCuNS. In a Article£¬once mentioned of 1111-67-7

Solution processed vertical p-channel thin film transistors using copper(i) thiocyanate

Here, we present a strategy for the realization of p-channel inorganic thin film transistors (TFTs) based on vertically stacked contacts and a copper(i) thiocyanate (CuSCN) semiconductor. The CuSCN semiconductor was generated by a simple low-temperature (ca.100 C) solution-based process. Utilizing the vertical architecture, channel length was determined by the thickness of the CuSCN film. This readily endows transistors with ultrashort channel lengths (<700 nm) to afford delivering drain current greatly exceeding that of conventional planar TFTs. Thus, high normalized transconductance of 0.84 S m?1and current density of 248 mA cm?2can be achieved for CuSCN-based vertical TFTs. To further improve the device's performance, we doped SnCl2into the semiconductor film. By doping SnCl2into CuSCN, shallow acceptor states that could induce additional holes were generated above the valence band maximum. The SnCl2-doped TFTs showed enlarged transconductance and current density values of 1.8 S m?1and 541 mA cm?2, respectively, which are comparable with those of other high performance vertical transistors. The p-channel inorganic TFTs developed in this study can open up exciting opportunities in complementary circuits, display switching, and flexible electronics. We¡¯ll also look at important developments in the pharmaceutical industry because understanding organic chemistry is important in understanding health, medicine, the role of 1111-67-7, and how the biochemistry of the body works.Electric Literature of 1111-67-7

Reference£º
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”