Final Thoughts on Chemistry for Cuprous thiocyanate

Electric Literature of 1111-67-7, If you are hungry for even more, make sure to check my other article about Electric Literature of 1111-67-7

Electric Literature of 1111-67-7, The reaction rate of a catalyzed reaction is faster than the reaction rate of the uncatalyzed reaction at the same temperature.1111-67-7, Name is Cuprous thiocyanate, molecular formula is CCuNS. In a Article,once mentioned of 1111-67-7

Deep Ultraviolet Copper(I) Thiocyanate (CuSCN) Photodetectors Based on Coplanar Nanogap Electrodes Fabricated via Adhesion Lithography

Adhesion lithography (a-Lith) is a versatile fabrication technique used to produce asymmetric coplanar electrodes separated by a <15 nm nanogap. Here, we use a-Lith to fabricate deep ultraviolet (DUV) photodetectors by combining coplanar asymmetric nanogap electrode architectures (Au/Al) with solution-processable wide-band-gap (3.5-3.9 eV) p-type semiconductor copper(I) thiocyanate (CuSCN). Because of the device's unique architecture, the detectors exhibit high responsivity (?79 A W-1) and photosensitivity (?720) when illuminated with a DUV-range (peak = 280 nm) light-emitting diode at 220 muW cm-2. Interestingly, the photosensitivity of the photodetectors remains fairly high (?7) even at illuminating intensities down to 0.2 muW cm-2. The scalability of the a-Lith process combined with the unique properties of CuSCN paves the way to new forms of inexpensive, yet high-performance, photodetectors that can be manufactured on arbitrary substrate materials including plastic. Electric Literature of 1111-67-7, If you are hungry for even more, make sure to check my other article about Electric Literature of 1111-67-7

Reference:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”