Introduction of a new synthetic route about 13395-16-9

With the rapid development of chemical substances, we look forward to future research findings about 13395-16-9

Bis(acetylacetone)copper, cas is 13395-16-9, it is a common heterocyclic compound, the copper-catalyst compound, its synthesis route is as follows.

A mixture of 1.05 g (4 mmol) Cu(AcAc)2, 0.44 g (2 mmol) Zn(OAc)2, 0.38 g (2 mmol) SnCl2, and 20 ml OLA were added into a 100 ml three-neck round-bottom reaction flask connected to a nitrogen gas cylinder. The mixture solution was always stirred vigorously in the flask purged with high pure N2 gas (99.999%), during the whole synthesis. After heated at 130 C for 30 min, the mixture solution became brownish. The brownish solution was injected with 8 ml of sulfur – OLA solution (1 M), then heated at the reaction temperature T reaction 240-280 C for 1 h. When its color changed from dark brownish into blackish, the mixture solution (or product) was cooled down to room temperature (RT) and added with 15 ml of toluene for dispersing by sonication. To washing or purifying the product, 40 ml of ethanol was firstly added to let the nanoparticles flocculate and precipitate; then precipitates of nanoparticles were collected by centrifuging at 4000 rpm for 20 min and the supernatant liquid was removed; the collected precipitates were dispersed in toluene again by sonication; then ethanol was added for precipitates, new precipitates were collected again by centrifuging. The above process was repeated for three times. The final precipitates (or CZTS nanoparticles) were divided into two parts: (1) CZTS nanoparticles dispersed in toluene to form a stable ink solution and (2) CZTS power dried in a vacuum oven.

With the rapid development of chemical substances, we look forward to future research findings about 13395-16-9

Reference£º
Article; Zhou, Min; Gong, Yanmei; Xu, Jian; Fang, Gang; Xu, Qingbo; Dong, Jianfeng; Journal of Alloys and Compounds; vol. 574; (2013); p. 272 – 277;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”