Trepci, Ada; Sellgren, Carl M.; Paalsson, Erik; Brundin, Lena; Khanlarkhani, Neda; Schwieler, Lilly; Landen, Mikael; Erhardt, Sophie published an article about the compound: 4-Hydroxyquinoline-2-carboxylic Acid( cas:492-27-3,SMILESS:O=C(C1=NC2=CC=CC=C2C(O)=C1)O ).Formula: C10H7NO3. Aromatic heterocyclic compounds can be classified according to the number of heteroatoms or the size of the ring. The authors also want to convey more information about this compound (cas:492-27-3) through the article.
The kynurenine pathway of tryptophan degradation produces several neuroactive metabolites such as kynurenic acid (KYNA), quinolinic acid (QUIN), and picolinic acid (PIC) thought to be involved in the pathophysiol. of psychosis, major depression, and suicidal behavior. Here, we analyzed cerebrospinal fluid (CSF) concentrations of tryptophan, kynurenine, KYNA, QUIN, and PIC utilizing ultra-performance liquid chromatog. – tandem mass spectrometry system (UPLC-MS/MS) in persons with bipolar disorder (n = 101) and healthy controls (n = 80) to investigate if the metabolites correlated with depressive symptoms or to the history of suicidal behavior. Furthermore, we analyzed if genetic variants of the enzyme amino-β-carboxymuconate-semialdehyde-decarboxylase (ACMSD) were associated with the CSF concentrations of PIC and QUIN. We found that CSF KYNA and PIC concentrations, as well as the kynurenine/tryptophan ratio were increased in bipolar disorder compared with controls. CSF PIC concentrations were lower in subjects with a history of suicidal behavior than those without, supporting the hypothesis that low CSF PIC is a marker of vulnerability for suicidality. Bipolar subjects taking antidepressants had higher CSF concentrations of kynurenine and KYNA than subjects not given these medications. A neg. association was found between a genetic variant of ACMSD and the ratio of PIC/QUIN, indicating that a polymorphism in ACMSD is associated with excess of QUIN formation at the expense of PIC. The present results confirm that the kynurenine pathway is activated in bipolar disorder, and suggest that shifting the activity of the kynurenine pathway away from QUIN production towards a production of KYNA and PIC might be a beneficial therapeutic strategy.
As far as I know, this compound(492-27-3)Formula: C10H7NO3 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.
Reference:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”