Liu, Pengyun’s team published research in ACS Applied Materials & Interfaces in 2020 | CAS: 7789-45-9

Cupric bromide(cas: 7789-45-9) can be used as reducing agent, when complexed by three molecules of pyridine initiators for the controlled polymerization of styrene, methyl acrylate and methyl methacrylate.Application In Synthesis of Cupric bromide

《Promoting the Efficiency and Stability of CsPbIBr2-Based All-Inorganic Perovskite Solar Cells through a Functional Cu2+ Doping Strategy》 was written by Liu, Pengyun; Yang, Xiaoqing; Chen, Yonghui; Xiang, Huimin; Wang, Wei; Ran, Ran; Zhou, Wei; Shao, Zongping. Application In Synthesis of Cupric bromide And the article was included in ACS Applied Materials & Interfaces in 2020. The article conveys some information:

Although organic-inorganic halide perovskite solar cells (PSCs) have shown dramatically enhanced power conversion efficiencies (PCEs) in the last decade, their long-term stability is still a critical challenge for commercialization. To address this issue, tremendous research efforts have been devoted to exploring all-inorganic PSCs because of their intrinsically high structural stability. Among them, CsPbIBr2-based all-inorganic PSCs have drawn increasing attention owing to their suitable band gap and favorable stability. However, the PCEs of CsPbIBr2-based PSCs are still far from those of their organic-inorganic counterparts, thus inhibiting their practical applications. Herein, we demonstrate that by simply doping an appropriate amount of Cu2+ into a CsPbIBr2 perovskite lattice (0.5 at. % to Pb2+), the perovskite crystallinity and grain size are increased, the perovskite film morphol. is improved, the energy level alignment is optimized, and the trap d. and charge recombination are reduced. As a consequence, a decent PCE improvement from 7.81 to 10.4% is achieved along with an enhancement ratio of 33% with a CsPbIBr2-based PSC. Furthermore, the long-term stability of CsPbIBr2-based PSCs against moisture and heat also remarkably improved by Cu2+ doping. This work provides a facile and effective route to improve the PCE and long-term stability of CsPbIBr2-based all-inorganic PSCs. In the experiment, the researchers used Cupric bromide(cas: 7789-45-9Application In Synthesis of Cupric bromide)

Cupric bromide(cas: 7789-45-9) can be used as reducing agent, when complexed by three molecules of pyridine initiators for the controlled polymerization of styrene, methyl acrylate and methyl methacrylate.Application In Synthesis of Cupric bromide

Referemce:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”