Liu, Xin-Fang et al. published their research in ACS Applied Materials & Interfaces in 2022 | CAS: 20427-59-2

Cuprichydroxide (cas: 20427-59-2) belongs to copper catalysts. The evolution of transition metal catalysts has attained a stage of civilization that authorizes for an extensive scope of chemical bonds formation partners to be combined efficiently. It is clear from the impact copper catalysis has had on organic synthesis that copper should be considered a first line catalyst for many organic reactions.Quality Control of Cuprichydroxide

Regulating the Li Nucleation/Growth Behavior via Cu2O Nanowire Array and Artificial Solid Electrolyte Interphase toward Highly Stable Li Metal Anode was written by Liu, Xin-Fang;Xie, Dan;Tao, Fang-Yu;Diao, Wan-Yue;Yang, Jia-Lin;Luo, Xiao-Xi;Li, Wen-Liang;Wu, Xing-Long. And the article was included in ACS Applied Materials & Interfaces in 2022.Quality Control of Cuprichydroxide This article mentions the following:

Lithium (Li) metal was considered to be the most promising anode material for next-generation rechargeable batteries. Unfortunately, the hazards induced by dendrite growth and volume fluctuation hinder its commercialized application. Here, a three-dimensional (3D) current collector composed of a vertically aligned Cu2O nanowire that is tightly coated with a polydopamine protective layer is developed to solve the encountered issues of lithium metal batteries (LMBs). The Cu2O nanowire arrays (Cu2O NWAs) provide abundant lithiophilic sites for inducing Li nucleation selectively to form a thin Li layer around the nanowires and direct subsequent Li deposition. The well-defined nanochannel works well in confining the Li growth spatially and buffering the volume change during the repeated cycling. The PDA coatings adhered onto the outline of the Cu2O NWAs serve as the artificial solid electrolyte interface to isolate the electrode and electrolyte and retain the interfacial stability. Moreover, the increased specific area of copper foam (CF) can dissipate the local c.d. and further suppress the growth of Li dendrites. As a result, CF@Cu2O NWAs@PDA realizes a dendrite-free morphol. and the assembled sym. batteries can work stably for over 1000 h at 3 mA cm-2. When CF@Cu2O NWAs@PDA is coupled with a LiFePO4 cathode, the full cells exhibit improved cycle stability and rate performance. In the experiment, the researchers used many compounds, for example, Cuprichydroxide (cas: 20427-59-2Quality Control of Cuprichydroxide).

Cuprichydroxide (cas: 20427-59-2) belongs to copper catalysts. The evolution of transition metal catalysts has attained a stage of civilization that authorizes for an extensive scope of chemical bonds formation partners to be combined efficiently. It is clear from the impact copper catalysis has had on organic synthesis that copper should be considered a first line catalyst for many organic reactions.Quality Control of Cuprichydroxide

Referemce:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”