Chemo-enzymatic cascade processes are invaluable due to their ability to rapidly construct high-value products from available feedstock chemicals in a one-pot relay manner. Safety of Copper(I) oxide, Name is Copper(I) oxide, Safety of Copper(I) oxide, molecular formula is Cu2O. In a article,once mentioned of Safety of Copper(I) oxide
The infinite layer copper oxides denoted as ACuO2, where A stands for the alkaline earth metal such as strontium or calcium, have attracted much attention in relation to high-temperature (Tc) superconductivity. Superconductivities of these species are achieved by several chemical doping such as hole-doping (h-doping) and electron-doping (e-doping). In this study, we have performed hybrid-density functional theory calculations, which are available in the strongly correlated systems such as transition metal complexes, in order to examine the electronic states after one e-doping for the linear chain clusters such as CuOCu and Cu3O2. The electronic states have been clarified from view points of energy, spin and charge density populations, natural orbital analysis and the difference of density. As the hole-doped electronic states have already been examined for the same clusters by the same methods in our previous work, we discuss the differences of the changes of electronic states between h-doping and e-doping.
The catalyzed pathway has a lower Ea, but the net change in energy that results from the reaction is not affected by the presence of a catalyst. In my other articles, you can also check out more blogs about 1317-39-1
Reference:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”