Reactions catalyzed within inorganic and organic materials and at electrochemical interfaces commonly occur at high coverage and in condensed media, causing turnover rates to depend strongly on interfacial structure and composition, Application In Synthesis of Cuprous thiocyanate, Name is Cuprous thiocyanate, belongs to copper-catalyst compound, is a common compound. Application In Synthesis of Cuprous thiocyanateIn an article, authors is Zhao, Fei, once mentioned the new application about Application In Synthesis of Cuprous thiocyanate.
Inorganic CsPbBr3 perovskite solar cell (PSC) has attracted much attention owing to its outstanding air and thermal stability and low cost manufacture process. Crystalline TiO2 (c-TiO2) has been widely used as electron-transporting layer (ETL) material for inorganic CsPbBr3 PSC. However, c-TiO2 requires high-temperature (>450 C) fabrication process which impedes the application of flexible inorganic CsPbBr3 PSC and its low electron mobility further limits the performance enhancement. Herein, we prepared novel amorphous Nb2O5 (a-Nb2O5) ETL through a facile room-temperature sputtering method for inorganic planar CsPbBr3 PSC. The PSC with a-Nb2O5 ETL has gained a champion efficiency of 5.74%, which is higher than that of the PSC (5.12% or 4.67%) based on crystalline Nb2O5 (c-Nb2O5) ETL or c-TiO2 ETL by high-temperature (500 C) annealing. The improved photovoltaic characteristic for CsPbBr3 PSC with a-Nb2O5 ETL may be ascribed to its suitable work function, high optical transmittance, low charge recombination at the a-Nb2O5/CsPbBr3 interface and the superior crystallinity of CsPbBr3 film deposited on a-Nb2O5 ETL. Moreover, the a-Nb2O5-based CsPbBr3 PSC without encapsulation exhibits a good long-term stability in ambient atmosphere. This work offers a new research direction for preparing high-performance inorganic PSC.
Catalysts are substances that increase the reaction rate of a chemical reaction without being consumed in the process. A catalyst, does not appear in the overall stoichiometry of the reaction it catalyzes. you can also check out more blogs about HPLC of Formula: C5H5N3O2!, Application In Synthesis of Cuprous thiocyanate
Reference:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”