Never Underestimate The Influence Of CCuNS

Catalysts are substances that increase the reaction rate of a chemical reaction without being consumed in the process. A catalyst, does not appear in the overall stoichiometry of the reaction it catalyzes. you can also check out more blogs about Reference of 52409-22-0!, Recommanded Product: 1111-67-7

Recommanded Product: 1111-67-7, Healthcare careers for chemists are once again largely based in laboratories, although increasingly there is opportunity to work at the point of care, helping with patient investigation. Mentioned the application of 1111-67-7, Name is Cuprous thiocyanate.

Organolead trihalide perovskite materials have attracted considerable interest because of their successful application in fabricating high-efficiency photovoltaic cells. Charge transport layers play a significant role in improving the efficiency and stability of perovskite solar cells (PSCs). In this work, we investigated the p-type doping effect of the poly(triarylamine) (PTAA) layer on the performance of PSCs by using three dopants. We observe that doping copper(I) thiocyanate (CuSCN) into PTAA led to a higher performance improvement for the PSCs than the use of copper(I) iodide (CuI) or lithium salt (Li-TFSI) as the dopant. The power conversion efficiency (PCE) of the PSCs significantly improved from 14.22% to 18.16% upon doping 2.0 wt % CuSCN with simultaneously enhanced open-circuit voltage, short-circuit current density, and fill factor. The long-term stability of the PSCs was also improved with significantly reduced PCE degradation (from 79% to 25%) after 200 h. Our results provide a simple method to improve the performance of planar PSCs by adding dopants into PTAA.

Catalysts are substances that increase the reaction rate of a chemical reaction without being consumed in the process. A catalyst, does not appear in the overall stoichiometry of the reaction it catalyzes. you can also check out more blogs about Reference of 52409-22-0!, Recommanded Product: 1111-67-7

Reference:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”