New learning discoveries about 2-(2-Bromoethyl)-1,3-dioxolane

If you are hungry for even more, make sure to check my other article about 18742-02-4, Recommanded Product: 2-(2-Bromoethyl)-1,3-dioxolane.

Let¡¯s face it, organic chemistry can seem difficult to learn, Recommanded Product: 2-(2-Bromoethyl)-1,3-dioxolane, Especially from a beginner¡¯s point of view. Like 18742-02-4, Name is 2-(2-Bromoethyl)-1,3-dioxolane, molecular formula is copper-catalyst, belongs to copper-catalyst compound. In a document, author is Xaba, B. S., introducing its new discovery.

The effect of CO2 and H-2 adsorption strength and capacity on the performance of Ga and Zr modified Cu-Zn catalysts for CO2 hydrogenation to methanol

The hydrogenation of CO2 to methanol was performed over Ga2O3 and ZrO2 modified Cu-Zn based catalysts. The prepared catalysts were characterised via P-XRD, ICP-OES, BET, SEM-EDX, H-2-TPR, CO2-TPD, H-2-TPD and H-2-chemisorption. The focus of this investigation was to assess the role of Ga2O3 and ZrO2 promoters on improving the methanol productivity over the Cu-Zn based catalysts. Emphasis was placed on the differences in CO2 and H-2 adsorption capacity and strength due to the introduction of the modifiers, with a focus on the influence of these properties on methanol production. The ZrO2 promoted catalyst delivered a higher methanol space-time yield (STY) in comparison to the Ga2O3 promoted and unpromoted catalysts. The better catalytic performance of the ZrO2 modified catalyst was partly attributed to an improvement of the reducibility. Furthermore, the CO2-TPD results showed that the ZrO2 modified catalyst exhibited the highest CO2 uptake and adsorption strength which contributed to its higher methanol yield. A correlation between the quantity of the spillover hydrogen and methanol yield was also shown to exist for the prepared catalysts. The results obtained from this study suggested that a strong interaction between CO2 and the catalyst surface is crucial to avoid premature desorption of CO2 or its intermediates, thus improving the efficiency of the catalyst. In contrast, an intermediate interaction of H-2 with the catalyst surface facilitates the hydrogen spill-over, which improves the methanol yield.

If you are hungry for even more, make sure to check my other article about 18742-02-4, Recommanded Product: 2-(2-Bromoethyl)-1,3-dioxolane.

Reference:
Copper catalysis in organic synthesis – NCBI,
,Special Issue “Fundamentals and Applications of Copper-Based Catalysts”