Chemistry is the science of change. But why do chemical reactions take place? Why do chemicals react with each other? The answer is in thermodynamics and kinetics, 16606-55-6, Name is (R)-4-Methyl-1,3-dioxolan-2-one, SMILES is O=C1OC[C@@H](C)O1, belongs to copper-catalyst compound. In a document, author is Yu, Jiafeng, introduce the new discover, Name: (R)-4-Methyl-1,3-dioxolan-2-one.
Stabilizing Cu+ in Cu/SiO2 Catalysts with a Shattuckite-Like Structure Boosts CO2 Hydrogenation into Methanol
Cu-based catalysts are widely employed for CO or CO2 hydrogenation into methanol. However, their catalytic performance highly depends on supports, and the real evolution of Cu species is still covered by active components. Herein, we supply a Cu/SiO2 catalyst prepared by flame spray pyrolysis (FSP), showing catalytic performance comparable to that of the active Cu/ZrO2 catalyst for methanol synthesis from CO2. It reaches 79% selectivity at a CO2 conversion of 5.2%, which is an outstanding selectivity among previously reported Cu/SiO2 catalysts, considering they are generally treated as nearly inert catalysts. In situ X-ray absorption spectroscopy (XAS) analysis shows that 5 times more Cu+ species in the FSP-Cu/SiO2 are stabilized in comparison to those in the traditional ammonia evaporation (AE) made catalyst even after reduction at 350 degrees C. A unique shattuckite-like precursor with a slightly distorted Cu-O-Si texture structure formed in the FSP-made catalyst is responsible for the enriched Cu+ species. Variations of intermediate formation and methanol production are found to have a good relationship with the amount of Cu+ species. According to the results of high-pressure in situ DRIFTS, we attribute this to the promotional effect of Cu+ on the stabilization of CO* intermediates, which inhibits CO desorption and facilitates further hydrogenation to CH3OH via the RWGS + CO-Hydro pathway. These results bring insights into the Cu reduction behavior and the function of Cu+ species during methanol production on Cu-based catalysts without the assistance of active supports.
The proportionality constant is the rate constant for the particular unimolecular reaction. the reaction rate is directly proportional to the concentration of the reactant. I hope my blog about 16606-55-6 is helpful to your research. Name: (R)-4-Methyl-1,3-dioxolan-2-one.
Reference:
Copper catalysis in organic synthesis – NCBI,
,Special Issue “Fundamentals and Applications of Copper-Based Catalysts”