Electric Literature of 1111-67-7, A catalyst don’t appear in the overall stoichiometry of the reaction it catalyzes, but it must appear in at least one of the elementary reactions in the mechanism for the catalyzed reaction. 1111-67-7, Name is Cuprous thiocyanate, molecular formula is CCuNS. In a Conference Paper£¬once mentioned of 1111-67-7
Planar perovskite solar cells employing copper(I) thiocyanate/N,N?-di(1-naphthyl)-N,N?-diphenyl-(1,1?-biphenyl)-4,4?-diamine bilayer structure as hole transport layers
Organic hole transport materials, such as N 2,N 2,N 2?,N 2?,N 7,N 7,N 7?,N 7?-octakis(4-methoxyphenyl)-9,9?-spirobi[9H-fluorene]-2,2?,7,7?-tetramine (Spiro-OMeTAD), are commonly used as the hole transport materials in efficient perovskite solar cells, but the chemical synthetic procedure may increase the cost of the photovoltaic devices. On the other hand, inorganic hole transport materials, such as copper(I) thiocyanate (CuSCN) or copper(I) iodide (CuI), have potential for the manufacture of efficient and low-cost perovskite solar cells, but the performance of these devices is still imperfect. In this study, we demonstrate the use of an inorganic CuSCN and organic N,N?-di(1-naphthyl)-N,N?-diphenyl-(1,1?-biphenyl)-4,4?-diamine (NPB) hybrid bilayer as an alternative hole transport layer for planar CH3NH3PbI3 perovskite solar cells. The electronic behavior of the bilayer and the performance of the corresponding devices were discussed. As a result, the power conversion efficiency (PCE) for the best cells at AM1.5G illumination with a shadow mask was 12.3%.
Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law.Electric Literature of 1111-67-7. In my other articles, you can also check out more blogs about 1111-67-7
Reference£º
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”