Label-free electrochemical aptasensor for rapid detection of SARS-CoV-2 spike glycoprotein based on the composite of Cu(OH)2 nanorods arrays as a high-performance surface substrate was written by Rahmati, Zeinab;Roushani, Mahmoud;Hosseini, Hadi;Choobin, Hamzeh. And the article was included in Bioelectrochemistry in 2022.Computed Properties of CuH2O2 This article mentions the following:
The development of advanced electrode materials and the combination of aptamer with them have improved dramatically the performance of aptasensors. Herein, a new architecture based on copper hydroxide nanorods (Cu(OH)2 NRs) are directly grown on the surface of screen printed carbon electrode (SPCE) using a two-step in situ, very simple and fast strategy and was used as a high-performance substrate for immobilization of aptamer strings, as well as an electrochem. probe to development a label-free electrochem. aptasensor for SARS-CoV-2 spike glycoprotein measurement. The Cu(OH)2 NRs was characterized using X-ray Diffraction (XRD) and electron microscopy (FESEM). In the presence of SARS-CoV-2 spike glycoprotein, a decrease in Cu(OH)2 NRs-associated peak current was observed that can be owing to the target-aptamer complexes formation and thus blocking the electron transfer of Cu(OH)2 NRs on the surface of electrode. This strategy exhibited wide dynamic range in of 0.1 fg mL-1 to 1.2μg mL-1 and with a high sensitivity of 1974.43μA mM-1 cm-2 and low detection limit of 0.03 ± 0.01 fg mL-1 of SARS-CoV-2 spike glycoprotein deprived of any cross-reactivity in the presence of possible interference species. In addition, the good reproducibility, repeatability, high stability and excellent feasibility in real samples of saliva and viral transport medium (VTM) were found from the provided aptasensor. Also, the aptasensor efficiency was evaluated by real samples of sick and healthy individuals and compared with the standard polymerase chain reaction (PCR) method and acceptable results were observed In the experiment, the researchers used many compounds, for example, Cuprichydroxide (cas: 20427-59-2Computed Properties of CuH2O2).
Cuprichydroxide (cas: 20427-59-2) belongs to copper catalysts. Copper has continued to be one of the most utilized and important transition metal catalysts in synthetic organic chemistry. Copper nanoparticles can also catalyze the coupling reaction of phenols, thiols, xanthogenates, nitrogen-containing nucleophiles, selenium ruthenium nucleophiles and the like.Computed Properties of CuH2O2
Referemce:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”