Share a compound : Copper(I) bromide

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Copper(I) bromide, 7787-70-4

7787-70-4, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Copper(I) bromide, cas is 7787-70-4,the copper-catalyst compound, it is a common compound, a new synthetic route is introduced below.

General procedure: In a round bottom flask, copper(I) halide (0.1mmol, CuBr for 1 or CuI for 2) was dissolved in 2mL of MeCN. Under continuous stirring, a 5mL MeCN:EtOH (3:2) solution of HC(3-PhPz)3 (0.11mmol, 50mg) was added dropwise. The produced light brown solution was stirred at room temperature for 3h, then its volume was reduced by evaporation to ca. 2mL. Hexane (10mL) was added and the obtained precipitate was filtered off, recrystallized from a mixture of CH2Cl2 and hexane (1:1) to afford complexes 1 or 2 as colourless crystals. [CuBr(TpmPh)] (1): Yield (45.9mg) 78%. Elemental analysis calcd (%) for C28H22BrCuN6¡¤CH2Cl2: C 51.92, H 3.61, N 12.53; found: C 51.51, H 3.70, N 12.64. FTIR (KBr): nu (cm-1)=1532m, 1491 w, 1442m, 1391 w, 1342 w, 1324 w, 1299 w, 1268 w, 1242m, 1209m, 1095m, 1077m, 1038m, 798m, 756s, 688s. Far IR (CsI): nu (cm-1)=221m nu(Cu-Br). 1H NMR (300MHz, DMSO-d6, delta): 9.10 (s, 1H, HC(3-PhPz)3), 8.11 (br, 3H, 5-H-pz), 7.85 (br, 6H, o-H-Ph), 7.42 (br, 9H, m,p-H-Ph), 6.95 (br, 3H, 4-H-pz). 13C{1H} NMR (300MHz, DMSO-d6, delta): 152.14 (3-C-pz), 132.20 (Cquat-Ph), 131.82 (5-C-pz)), 128.76 (m-C-Ph), 128.32 (p-C-Ph), 125.53 (o-C-Ph), 104.57 (4-C-pz), 82.09 (HC(3-Phpz)3). ESI(+)MS in MeCN (m/z assignment, % intensity): 546 ({[HC(3-Phpz)3]Cu+MeCN}+, 100), 505 ({[HC(3-Phpz)3]Cu}+, 23).

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Copper(I) bromide, 7787-70-4

Reference£º
Article; Mahmoud, Abdallah G.; Martins, Luisa M.D.R.S.; Guedes da Silva, M. Fatima C.; Pombeiro, Armando J.L.; Inorganica Chimica Acta; vol. 483; (2018); p. 371 – 378;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”