All Transition Metal Selenide Composed High-Energy Solid-State Hybrid Supercapacitor was written by Shinde, Pragati A.;Chodankar, Nilesh R.;Abdelkareem, Mohammad Ali;Patil, Swati J.;Han, Young-Kyu;Elsaid, Khaled;Olabi, Abdul Ghani. And the article was included in Small in 2022.Formula: CuH2O2 This article mentions the following:
Transition metal selenides (TMSs) have enthused snowballing research and industrial attention due to their exclusive conductivity and redox activity features, holding them as great candidates for emerging electrochem. devices. However, the real-life utility of TMSs remains challenging owing to their convoluted synthesis process. Herein, a versatile in situ approach to design nanostructured TMSs for high-energy solid-state hybrid supercapacitors (HSCs) is demonstrated. Initially, the rose-nanopetal-like NiSe@Cu2Se (NiCuSe) pos. electrode and FeSe nanoparticles neg. electrode are directly anchored on Cu foam via in situ conversion reactions. The complementary potential windows of NiCuSe and FeSe electrodes in aqueous electrolytes associated with the excellent elec. conductivity results in superior electrochem. features. The solid-state HSCs cell manages to work in a high voltage range of 0-1.6 V, delivers a high specific energy d. of 87.6 Wh kg-1 at a specific power d. of 914.3 W kg-1 and excellent cycle lifetime (91.3% over 10 000 cycles). The innovative insights and electrode design for high conductivity holds great pledge in inspiring material synthesis strategies. This work offers a feasible route to develop high-energy battery-type electrodes for next-generation hybrid energy storage systems. In the experiment, the researchers used many compounds, for example, Cuprichydroxide (cas: 20427-59-2Formula: CuH2O2).
Cuprichydroxide (cas: 20427-59-2) belongs to copper catalysts. The applications of Copper-based nanoparticles have received great attention due to the earth-abundant, low toxicity and inexpensive. Due to these characteristics, copper nanoparticles have generated a great deal of interest especially in the field of catalysis. Formula: CuH2O2
Referemce:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”