Simple exploration of 13395-16-9

Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law.Reference of 13395-16-9. In my other articles, you can also check out more blogs about 13395-16-9

Reference of 13395-16-9, Chemistry is the science of change. But why do chemical reactions take place? Why do chemicals react with each other? The answer is in thermodynamics and kinetics.In a document type is Article, and a compound is mentioned, 13395-16-9, Bis(acetylacetone)copper, introducing its new discovery.

Compositionally tunable Cu2ZnSn(S1-xSe x)4 nanocrystals: Probing the effect of Se-inclusion in mixed chalcogenide thin films

Nanocrystals of multicomponent chalcogenides, such as Cu 2ZnSnS4 (CZTS), are potential building blocks for low-cost thin-film photovoltaics (PVs). CZTS PV devices with modest efficiencies have been realized through postdeposition annealing at high temperatures in Se vapor. However, little is known about the precise role of Se in the CZTS system. We report the direct solution-phase synthesis and characterization of Cu 2ZnSn(S1-xSex)4 nanocrystals (0 ? x ? 1) with the aim of probing the role of Se incorporation into CZTS. Our results indicate that increasing the amount of Se increases the lattice parameters, slightly decreases the band gap, and most importantly increases the electrical conductivity of the nanocrystals without a need for annealing.

Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law.Reference of 13395-16-9. In my other articles, you can also check out more blogs about 13395-16-9

Reference£º
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”