Simple exploration of Copper(II) sulfate pentahydrate

The synthetic route of 7758-99-8 has been constantly updated, and we look forward to future research findings.

Each compound has different characteristics, and only by selecting the characteristics of the compound suitable for a specific situation can the compound be applied on a large scale. 7758-99-8, name is Copper(II) sulfate pentahydrate. This compound has unique chemical properties. The synthetic route is as follows. 7758-99-8

Example 2828.1 28.2[0329] Methyl 4-bromo-3-(trifluoromethoxy)benzoate (28.2). To a solution of 4-amino-3-(trifluoromethoxy)benzoic acid (2.00 g, 9.10 mmol) in MeOH (25.0 mL), was slowly added HCl (1.0 mL, 1.0 M in ether) at room temperature. The resulting reaction mixture was stirred at room temperature overnight. Benzene (20 mL) was added, and the reaction was heated at reflux with a Dean-Stark trap to remove the half volume of the solvent. The rest of the solvent was then evaporated to give the product. MS (ESI) m/e = 235.9 [M+l]+, Calc’d for CgHeF3NOs, 235.1. The crude product was used in the next step without further purification. To an ice-cooled suspension of methyl 4-amino-3- (trifluoromethoxy)benzoate hydrogen chloride salt (8.60 g, 31.70 mmol) in 17.1 mL of water and concentrated HBr (48 %, 17.1 mL), was slowly added a prepared 2.5 M solution of sodium nitrite (2.20 g in 12.7 mL) at 00C. The reaction mixture was stirred at 0 0C for 10 minutes. Meanwhile, a solution OfCuSO4 (6.68 g) in 35 mL of water was heated and sodium bromide (6.52 g) was added. The solution became a green color, and a solution OfNa2SOs (2.80 g) in water (10 mL) was then added to it. The solution was cooled at 0 0C and washed with water (25 x 3 mL). The water was then decanted off. Concentrated HBr (16.7 mL) was added, and the solution became a purple color. The solution of CuBr was slowly added to the diazonium salt (prepared above) at 00C. After addition, the ice-bath was removed, and an oil-bath was placed under the reaction vessel. The reaction mixture was then heated to 600C for 15 minutes, at 80 0C for 15 minutes, and then at 1000C for 20 minutes. The reaction mixture was next cooled to room temperature and made basic with Na2CO3 to a pH 8. The aqueous solution was extracted with EtOAc (100 x 2 mL). The organic layer was washed with brine (25 mL) and dried with MgSO4. The solvent was removed to give the crude product 28.2. 1H NMR (CDCl3) delta 3.96 (s, 3H), 7.75 (d, J= 8.4 Hz5 1 H), 7.86 (d, J= 8.4 Hz, 1 H), 7.98 (s, IH).

The synthetic route of 7758-99-8 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; AMGEN INC.; WO2008/30520; (2008); A1;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”