Some scientific research about Cuprous thiocyanate

Interested yet? Keep reading other articles of Synthetic Route of 538-58-9!, Related Products of 1111-67-7

Related Products of 1111-67-7, Catalysts function by providing an alternate reaction mechanism that has a lower activation energy than would be found in the absence of the catalyst. In some cases, the catalyzed mechanism may include additional steps. In an article, authors is Kuang, Xiao-Nan, once mentioned the application of Related Products of 1111-67-7, Name is Cuprous thiocyanate,molecular formula is CCuNS, is a conventional compound.

Nine novel copper(I) complexes with diphosphine and diimine ligands, namely [Cu(dpq)(xantphos)]BF4 (1), [Cu(dpq)(xantphos)]I (2), [Cu(dpq)(dppp)]BF4 (3), [Cu(dppz)(dppp)]BF4 (4), [Cu(dppz)(dppp)]I (5), [Cu(dppz)(pop)]I (6), [Cu(dpq)(pop)]I (7), [Cu(dpq)(pop)]Br (8), [Cu(dpq)(pop)]SCN (9) (dpq = pyrazino[2,3-f][1,10]phenanthroline, dppz = dipyrido[3,2-a:2?,3?-c]phenazine, xantphos = 9,9-dimethyl-4,5-bis(diphenylphosphanyl)xanthene, dppp = 1,3-bis(diphenylphosphino)propane, pop = 1,1?-[(Oxydi-2,1-phenylene)]bis[1,1-diphenylphosphine]), were characterized by single crystal X-ray diffraction, IR, elemental analysis, 1H NMR, 31P NMR, fluorescence spectra and terahertz time domain spectroscopy (THz-TDS). These nine complexes were synthesized by the reactions of copper salts, diimine ligands and various of P-donor ligands through one-pot method. Single crystal X-ray diffraction reveals that complex 9 is of a simple mono-nuclear structure while complexes 6 and 7 are of dimer structures. For complex 8, hydrogen bonds and C?H?pi interactions lead to the formation of a 1D infinite chain structure. Interestingly, complexes 1?5 show novel 2D or 3D network structures through C?H?pi interactions. In addition, complexes 1?3 and 6?9 exhibit interesting fluorescence in the solid state at room temperature. Among the nine complexes, complex 1 shows the highest quantum yield up to 37% and the lifetime of 1 is 6.0 mus. The terahertz (THz) time-domain spectra of these complexes were also studied.

Interested yet? Keep reading other articles of Synthetic Route of 538-58-9!, Related Products of 1111-67-7

Reference:
Copper catalysis in organic synthesis – NCBI,
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”