Enzymes are biological catalysts that produce large increases in reaction rates and tend to be specific for certain reactants and products. 14347-78-5, Name is (R)-(2,2-Dimethyl-1,3-dioxolan-4-yl)methanol, molecular formula is C6H12O3, belongs to copper-catalyst compound. In a document, author is Ye, Yanzhu, introduce the new discover, Recommanded Product: (R)-(2,2-Dimethyl-1,3-dioxolan-4-yl)methanol.
Highly selective and active Cu-In2O3/C nanocomposite for electrocatalytic reduction of CO2 to CO
The CuIn2O3/C nanocomposite was prepared by a simple solid-phase reduction method. The introduction of In2O3 into Cu/C to form the CuIn2O3/C nanocomposite evidently enhances the electrocatalytic activity for the selective reduction of CO2 to CO. Specifically, the CuIn2O3/C nanocomposite exhibits higher Faraday efficiency (FE = 86.7%) at -0.48 V vs. the reversible hydrogen electrode (RHE) in the electrocatalytic reduction of CO2 to CO and larger current densities (55 mA cm(2)) under a low overpotential (-1.08 V vs. RHE). These indicate its superior performance over many of the reported Cu-based catalysts [1-4]. It was also found that by rationally adjusting the applied potential, tunable syngas can be formed, which can be used to synthesize formic acid, methyl ether, methanol, synthetic fuels, or other bulk chemicals through appropriate industrial processes. Furthermore, the CuIn2O3/C nanocomposite maintains good stability in the electrocatalytic reduction of CO2. This work demonstrates a novel strategy to convert CO2 into desired products with high energy efficiency and large current density under low overpotential by the rational designing of non-precious metal catalysts. (C) 2020 Elsevier Inc. All rights reserved.
Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law. In my other articles, you can also check out more blogs about 14347-78-5. Recommanded Product: (R)-(2,2-Dimethyl-1,3-dioxolan-4-yl)methanol.
Reference:
Copper catalysis in organic synthesis – NCBI,
,Special Issue “Fundamentals and Applications of Copper-Based Catalysts”