Share a compound : 578743-87-0

578743-87-0 is used more and more widely, we look forward to future research findings about [1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride

[1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride, cas is 578743-87-0, it is a common heterocyclic compound, the copper-catalyst compound, its synthesis route is as follows.,578743-87-0

Chloro[l ,3-bis(2,6-di-i-propylphenyl)imidazol-2-ylidene]copper(I) (121.9 mg, 0.25 mmol) and silver triflate (64.2 mg, 0.25 mmol) were mixed under nitrogen in 25 mL flask and 10 mL of dry THF were added. Reaction mixture was stirred at RT for 30 minutes. Solution of 1 , 10-phenanthroline (45.05 mg, 0.25 mmol) in dry THF (5 mL) was added. Reaction mixture turned yellow and was stirred at RT overnight. Resulting mixture was filtered through Celite and solvent was evaporated on rotovap. Recrystallization from CH2Ch by vapor diffusion of Et20 gave 120 mg (61.4%) of yellow crystals. Anal, calcd. for C40H44CUF3N4O3S: C, 61.48; H, 5.68; N, 7.17; Found: C, 61.06; H, 5.61; N, 7.14. Structure was confirmed by IH-NMR spectrum of [(IPR)Cu(phen)]OTf (CDCb, 400MHz).

578743-87-0 is used more and more widely, we look forward to future research findings about [1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride

Reference£º
Patent; THE UNIVERSITY OF SOUTHERN CALIFORNIA; THOMPSON, Mark; DJUROVICH, Peter; KRYLOVA, Valentina; WO2011/63083; (2011); A1;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Share a compound : 578743-87-0

As the rapid development of chemical substances, we look forward to future research findings about 578743-87-0

[1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride, cas is 578743-87-0, it is a common heterocyclic compound, the copper-catalyst compound, its synthesis route is as follows.,578743-87-0

Carbazole (83.6mg, 0.5mmol) and NaH (12 mg, 0.5 mmol) was mixed with THF and 15 ml, atroom temperature under a nitrogen atmosphere until bubbling ceased (15 min) and stirred.Chloro [1,3-bis (2,6-diisopropylphenyl) imidazol-2-ylidene] was added copper (I) ((IPr) CuCl)(243.8mg, 0.5mmol), the reaction mixture was stirred for one hour did. Then, the mixture wasfiltered through a plug of Celite (registered trademark) under an inert atmosphere, and thesolvent was removed by rotary evaporation. The product was obtained as a white solid (170mg,55%).

As the rapid development of chemical substances, we look forward to future research findings about 578743-87-0

Reference£º
Patent; Universal Display Corporation; Mark, E. Thomson; Peter, I. Jurobitchi; Valentina, Krirowa; (66 pag.)JP2015/91800; (2015); A;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Analyzing the synthesis route of 578743-87-0

With the synthetic route has been constantly updated, we look forward to future research findings about [1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride,belong copper-catalyst compound

As a common heterocyclic compound, it belong copper-catalyst compound,[1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride,578743-87-0,Molecular formula: C27H36ClCuN2,mainly used in chemical industry, its synthesis route is as follows.,578743-87-0

In a dry double-mouth bottle to place Ir – 1 (0.0695 g, 0.1 mmol), CuClNHC (0.0488 g, 0.1 mmol), vacuum pumping and nitrogen cycle three times, then the nitrogen flow by adding 10 ml ethanol, stirring reflux reaction for 4 hours, cooling to room temperature, then added potassium hexafluorophosphate (0.184 g, 1 mmol), stirring at the room temperature reaction 2 hours, filtered, concentrated filtrate, ethanol: dichloromethane=1:10 column, get the orange solid 0.064 g, and the yield is 50%.

With the synthetic route has been constantly updated, we look forward to future research findings about [1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride,belong copper-catalyst compound

Reference£º
Patent; Jiangsu University Of Science And Technology; Shi Chao; Li Qiuxia; Zhang Xinghua; (24 pag.)CN108690096; (2018); A;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Share a compound : 578743-87-0

With the rapid development of chemical substances, we look forward to future research findings about [1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride

[1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride, cas is 578743-87-0, it is a common heterocyclic compound, the copper-catalyst compound, its synthesis route is as follows.,578743-87-0

In a glovebox, a 30 mL round-bottom flask was charged with (IPr)CuCl (969.0 mg, 2.00 mmol) and NaOtBu (192.0 mg, 2.00 mmol). Anhydrous THF (12.0 mL) was added. The resulting opaque brown solution was stirred for 2.0 h. It was filtered through Celite in glovebox and concentrated in vacuo affording (IPr)Cu(OtBu) as an off-white powder (802.2 mg, 79% yield).

With the rapid development of chemical substances, we look forward to future research findings about [1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride

Reference£º
Article; Zeng, Wei; Wang, Enyu; Qiu, Rui; Sohail, Muhammad; Wu, Shaoxiang; Chen, Fu-Xue; Journal of Organometallic Chemistry; vol. 743; (2013); p. 44 – 48;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Share a compound : 578743-87-0

With the rapid development of chemical substances, we look forward to future research findings about [1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride

[1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride, cas is 578743-87-0, it is a common heterocyclic compound, the copper-catalyst compound, its synthesis route is as follows.,578743-87-0

In a dry double-mouth bottle to place Pt – 2 (0.0594 g, 0.1 mmol), CuClNHC (0.0488 g, 0.1 mmol), vacuum pumping and nitrogen cycle three times, then the nitrogen flow by adding 10 ml ethanol, stirring reflux reaction for 4 hours, cooling to room temperature, then added potassium hexafluorophosphate (0.184 g, 1 mmol), stirring at the room temperature reaction 2 hours, filtered, concentrated filtrate, ethanol: dichloromethane=1:10 column, get the orange solid 0.047 g, and the yield is 40%.

With the rapid development of chemical substances, we look forward to future research findings about [1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride

Reference£º
Patent; Jiangsu University Of Science And Technology; Shi Chao; Li Qiuxia; Zhang Xinghua; (24 pag.)CN108690096; (2018); A;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Analyzing the synthesis route of 578743-87-0

With the synthetic route has been constantly updated, we look forward to future research findings about [1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride,belong copper-catalyst compound

As a common heterocyclic compound, it belong copper-catalyst compound,[1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride,578743-87-0,Molecular formula: C27H36ClCuN2,mainly used in chemical industry, its synthesis route is as follows.,578743-87-0

General procedure: To an oven-dried screwed 20 mL vial were added (NHC)CuCl (c7 or c8, 0.2 mmol) suspended in dry THF (3 mL); in another vial, [tBu3PN]Li (1b, 42.3 mg, 0.95 eq.) was also dissolved in dry THF (3 mL), then the vial was put into glove-box fridge (-35 C) for one hour. Then the cold mixture was dropped into the (NHC)CuCl/THF suspension slowly under stirring and the suspension was turned into clear solution as the lithium salt added. After addition, the reaction mixture was kept at room temperature in glove box for 13 hours. After the reaction was completed, the volatile was removed under vacuum and dry hexane or pentane (7 mL) was added into the formed oily residue. The suspension obtained was kept stirring for another 15 mins at room temperature, then filtered through a short pad of neutral celite to get rid of precipitate. The filtrate was cooled down in the fridge (-35 C) for 3-4 hours to remove the unreacted lithium salt 1b further. Repeated once again to get the clear hexane or pentane filtrate. The filtrate was evaporated until white crystallized solid was formed, which is the catalytic active species (3 or 4). IPrCuCl (c7, 97 mg, 0.2 mmol); Obtain IPrCuNPtBu3 (3, 99 mg, 78%) as Colorless Solid; 1H NMR (C6D6, 600 MHz) delta 7.26-7.21 (br, m, 4H, m-ArH), 7.17-7.14 (br, m, 2H, p-ArH), 6.40 (s, 2H, NCH=), 2.83 (sep, 4H, J = 6.6 Hz, CH(CH3)2), 1.61 (d, 12H, J = 6.6 Hz, CH(CH3)2), 1.37 (d, 27H, J(PH) = 10.8 Hz, P(C(CH3)3)3), 1.20 (d, 12H, J = 6.6 Hz, CH(CH3)2); 13C NMR (C6D6, 151 MHz) delta 146.18, 136.50, 130.42, 128.68, 124.42, 122.05, 40.78, 40.49, 31.01, 29.33, 25.04, 24.42; 31P NMR (C6D6, 243 MHz) delta 26.35 (s); Elemental analysis calcd for [C39H63CuN3P+0.67 THF]: C, 69.84; H, 9.61; N, 5.86. Found: C, 69.48; H, 9.90; N, 6.19.

With the synthetic route has been constantly updated, we look forward to future research findings about [1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride,belong copper-catalyst compound

Reference£º
Article; Bai, Tao; Yang, Yanhui; Han, Chao; Tetrahedron Letters; vol. 58; 15; (2017); p. 1523 – 1527;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Share a compound : [1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride

As the rapid development of chemical substances, we look forward to future research findings about 578743-87-0

[1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride, cas is 578743-87-0, it is a common heterocyclic compound, the copper-catalyst compound, its synthesis route is as follows.

Chloro[l,3-bis(2,6-di-i-propylphenyl)imidazol-2-ylidene]copper(I) (195.1 mg, 0.4 mmol) and silver triflate (102.7 mg, 0.4 mmol) were mixed under nitrogen in 25 mL flask and 10 mL of dry THF were added. Reaction mixture was stirred at RT for 30 minutes.Solution of 2,2′-bipyridine (62.4 mg, 0.4 mmol) in dry THF (5 mL) was added. Reaction mixture turned orange and was stirred at RT overnight. Resulting mixture was filtered through Celite and solvent was evaporated on rotovap. Recrystallization from CH2CI2 by vapor diffusion of EtaO gave 215 mg (70.9%) of orange crystals. Anal, calcd. forC38H44CUF3N4O3S: C, 60.26; H, 5.86; N, 7.40; Found: C, 60.18; H, 5.82; N, 7.38. Structure was confirmed by iH-NMR spectrum of [(IPR)Cu(bipy)]OTf (CDCb, 400MHz).

As the rapid development of chemical substances, we look forward to future research findings about 578743-87-0

Reference£º
Patent; THE UNIVERSITY OF SOUTHERN CALIFORNIA; THOMPSON, Mark; DJUROVICH, Peter; KRYLOVA, Valentina; WO2011/63083; (2011); A1;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Simple exploration of 578743-87-0

As the paragraph descriping shows that 578743-87-0 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.578743-87-0,[1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride,as a common compound, the synthetic route is as follows.

In a dry double-mouth bottle to place Ir – 2 (0.0796 g, 0.1 mmol), CuClNHC (0.0488 g, 0.1 mmol), vacuum pumping and nitrogen cycle three times, then the nitrogen flow by adding 10 ml ethanol, stirring reflux reaction for 4 hours, cooling to room temperature, then added potassium hexafluorophosphate (0.184 g, 1 mmol), stirring at the room temperature reaction 2 hours, filtered, concentrated filtrate, ethanol: dichloromethane=1:10 column, get the orange solid 0.069 g, and the yield is 50%.

As the paragraph descriping shows that 578743-87-0 is playing an increasingly important role.

Reference£º
Patent; Jiangsu University Of Science And Technology; Shi Chao; Li Qiuxia; Zhang Xinghua; (24 pag.)CN108690096; (2018); A;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Extracurricular laboratory: Synthetic route of 578743-87-0

As the rapid development of chemical substances, we look forward to future research findings about 578743-87-0

[1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride, cas is 578743-87-0, it is a common heterocyclic compound, the copper-catalyst compound, its synthesis route is as follows.

In a dry double-mouth bottle to place Ir – 3 (0.0796 g, 0.1 mmol), CuClNHC (0.0488 g, 0.1 mmol), vacuum pumping and nitrogen cycle three times, then the nitrogen flow by adding 10 ml ethanol, stirring reflux reaction for 4 hours, cooling to room temperature, then added potassium hexafluorophosphate (0.184 g, 1 mmol), stirring at the room temperature reaction 2 hours, filtered, concentrated filtrate, ethanol: dichloromethane=1:10 column, get the orange solid 0.069 g, and the yield is 50%.

As the rapid development of chemical substances, we look forward to future research findings about 578743-87-0

Reference£º
Patent; Jiangsu University Of Science And Technology; Shi Chao; Li Qiuxia; Zhang Xinghua; (24 pag.)CN108690096; (2018); A;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”

 

Some tips on 578743-87-0

As the paragraph descriping shows that 578743-87-0 is playing an increasingly important role.

578743-87-0, [1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene]copper chloride is a copper-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

In a flame-dried Schlenk tube under argon atmosphere, [CuCl(IPr)] (1) (0.3mmol, 150mg, 1 equiv.) and KCN (0.3mmol, 19mg, 1 equiv.) were introduced in degassed MeOH (5mL) and the reaction mixture was stirred under reflux (50C) for 4h. After returning to room temperature, the reaction mixture was concentrated to dryness under vacuum. The complex was then dissolved in dichloromethane and filtered through a pad of Celite and concentrated again under vacuum. A purification by recrystallization by slow diffusion of pentane in a THF solution of the complex led to the pure complex (4) as a white powder (143mg, 97% yield). 1H-NMR (CDCl3, 400MHz): delta 1.22 (d, J=6.9Hz, 12H), 1.27 (d, J=6.9Hz, 12H), 2.50 (sept, J=6.9Hz, 4H), 7.14 (s, 2H), 7.30 (d, J=7.8Hz, 4H), 7.50 (t, J=7.8Hz, 4H) ppm. (spectroscopic data in good agreement with the literature) [54].

As the paragraph descriping shows that 578743-87-0 is playing an increasingly important role.

Reference£º
Article; Elie, Margaux; Mahoro, Gilbert Umuhire; Duverger, Eric; Renaud, Jean-Luc; Daniellou, Richard; Gaillard, Sylvain; Journal of Organometallic Chemistry; vol. 893; (2019); p. 21 – 31;,
Copper catalysis in organic synthesis – NCBI
Special Issue “Fundamentals and Applications of Copper-Based Catalysts”